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‣Perceptual similarity is not a new problem: 
■ Manos and Sakrison, 1974 ■ Girod, 1993 ■ Teo & Heeger, 1994 ■ Eskicioglu and Fisher, 

1995 ■ Eckert and Bradley, 1998 ■ Janssen, 2001 ■ Wang, 2001 ■ Wang and Bovik, 2002   

■ Wang et al., 2002 ■ Pappas & Safranek, 2000 ■ Wang et al., 2003 ■ Sheikh et al., 2005   

■ Wang and Bovik, 2009 ■ Wang et al., 2009 ■ Many more…

‣Today we have new much more powerful tools 
• Deep nets can exploit any weaknesses in the metrics 

• Nets get penalized if they do better than the metric
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‣ Idea 1: Stick to traditional metrics 
• MSE, PSNR 

• SSIM, MS-SSIM [Wang et. al. 2003] 

‣Simple, intuitive way to benchmark performance

‣However, they are far from ideal
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Is maximizing PSNR + MS-SSIM the right solution?

~200  
bytes

Generic WaveOne 
(no GAN) 

Domain-aware  
Adversarial model

MS-SSIM: 0.93

PSNR: 25.9

MS-SSIM: 0.89

PSNR: 23.0

Idea 3: Maybe we should use GANs?
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GANs are very promising
‣Reconstructions visually appealing (sometimes!)

‣Generic and intuitive objective: 

• Similarity function of the difficulty of distinguishing the 
images by an expert

‣Unfortunately the loss is different for every 
network and evolves over time
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Idea 4: Maybe we should use semantics?
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Losses based on semantics

‣ Intermediate layers of pre-trained classifiers 
capture semantics [Zeiler & Fergus 2013] 

‣Significantly better correlation to MoS vs 
traditional metrics

[Zhang et al, CVPR18]

‣However, arbitrary and over-complete 
• Millions of parameters 

• Trained on unrelated task 

• Which nets? Which layers? How to combine them?



Idea 5: Attention-driven metrics

Where people look

Where the bandwidth goes



Idea 5: Attention-driven metrics

Where people look

Where the bandwidth goes

‣All existing metrics treat every pixel equally 

• Clearly suboptimal



Idea 5: Attention-driven metrics

Where people look

Where the bandwidth goes

‣All existing metrics treat every pixel equally 

• Clearly suboptimal

‣But defining importance is another open problem
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Idea 6: Task-driven metrics

‣A/B testing compression variants based on feature 
• Goal: Social sharing 

• Measure: user engagement 
 

• Goal: ML on the cloud 

• Measure: performance on the ML task

‣Solves the “right” problem

‣However, not accessible, not repeatable,  
not back-propagatable
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Idea 7: when all fails, ask the experts
‣Humans are the gold standard for perceptual 
fidelity

‣Challenges 
• Hard to construct objective tests 

• Can’t back-propagate through humans  

• Expensive to evaluate (both time & money) 

• Non-repeatable

“On a scale from 0 to 1, how different are these two pixels? 
Only another 999,999 comparisons to go!”
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Conclusion
‣The impossible wishlist for ideal quality metric: 

• Simple and intuitive 

• Repeatable 

• Back-propagatable 

• Content-aware 

• Efficient 

• Importance-driven 

• Task-aware

‣ Improving quality metrics is critical in the neural net age

The wrong metrics lead to good 
solutions to the wrong problem!



http://wave.one

Thanks to my team!

The WaveOne team, compressed to 0.01 BPP,  
using GAN specializing on frontal faces

http://wave.one

