

We need a better perceptual similarity metric Lubomir Bourdev WaveOne, Inc.

CVPR Workshop and Challenge on Learned Compression June 18th 2018

Challenges in benchmarking compression

- Measurement of perceptual similarity
- Consideration of computational efficiency
- Choice of color space
- Aggregating results from multiple images
- Ranking of R-D curves
- Dataset bias
- Many more!

Challenges in benchmarking compression

Measurement of perceptual similarity

- Consideration of computational efficiency
- Choice of color space
- Aggregating results from multiple images
- Ranking of R-D curves
- Dataset bias
- Many more!

Why perceptual similarity is critical now?

Perceptual similarity is not a new problem

■ Manos and Sakrison, 1974 ■ Girod, 1993 ■ Teo & Heeger, 1994 ■ Eskicioglu and Fisher,

1995 ■ Eckert and Bradley, 1998 ■ Janssen, 2001 ■ Wang, 2001 ■ Wang and Bovik, 2002

■ Wang et al., 2002 ■ Pappas & Safranek, 2000 ■ Wang et al., 2003 ■ Sheikh et al., 2005

■ Wang and Bovik, 2009 ■ Wang et al., 2009 ■ Many more...

Why perceptual similarity is critical now?

Perceptual similarity is not a new problem

■ Manos and Sakrison, 1974 ■ Girod, 1993 ■ Teo & Heeger, 1994 ■ Eskicioglu and Fisher,

- 1995 Eckert and Bradley, 1998 Janssen, 2001 Wang, 2001 Wang and Bovik, 2002
- Wang et al., 2002 Pappas & Safranek, 2000 Wang et al., 2003 Sheikh et al., 2005
- Wang and Bovik, 2009 Wang et al., 2009 Many more...

Today we have new much more powerful tools

Deep nets can exploit any weaknesses in the metrics

Why perceptual similarity is critical now?

Perceptual similarity is not a new problem:

■ Manos and Sakrison, 1974 ■ Girod, 1993 ■ Teo & Heeger, 1994 ■ Eskicioglu and Fisher,

- 1995 Eckert and Bradley, 1998 Janssen, 2001 Wang, 2001 Wang and Bovik, 2002
- Wang et al., 2002 Pappas & Safranek, 2000 Wang et al., 2003 Sheikh et al., 2005
- Wang and Bovik, 2009 Wang et al., 2009 Many more...

Today we have new much more powerful tools

- Deep nets can exploit any weaknesses in the metrics
- Nets get penalized if they do better than the metric

How do we measure quality assessment?

How do we measure quality assessment?

Idea 1: Stick to traditional metrics

- MSE, PSNR
- SSIM, MS-SSIM [Wang et. al. 2003]

Simple, intuitive way to benchmark performance

How do we measure quality assessment?

Idea 1: Stick to traditional metrics

- MSE, PSNR
- SSIM, MS-SSIM [Wang et. al. 2003]

Simple, intuitive way to benchmark performance

However, they are far from ideal

Min PSNR on MS-SSIM isocontour

Target

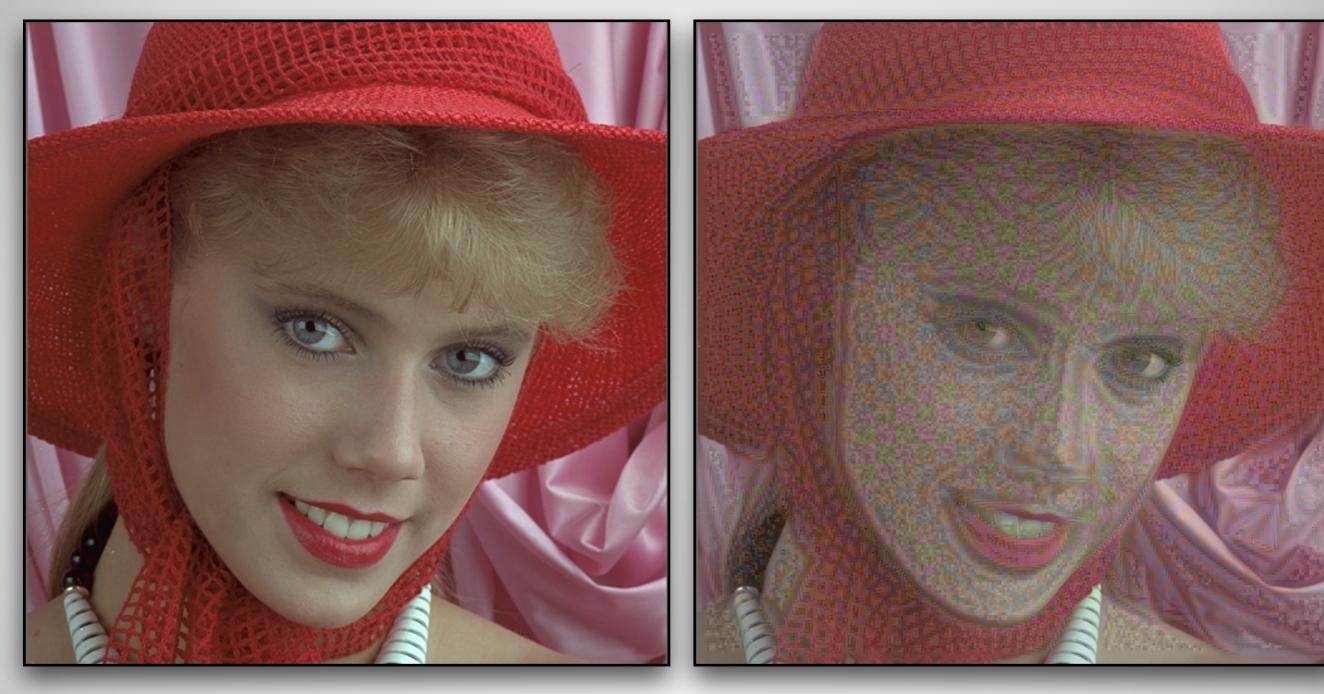
MS-SSIM: 0.99PSNR:11.6dB

Min PSNR on MS-SSIM isocontour

Target

MS-SSIM: 0.997PSNR:14.4dB

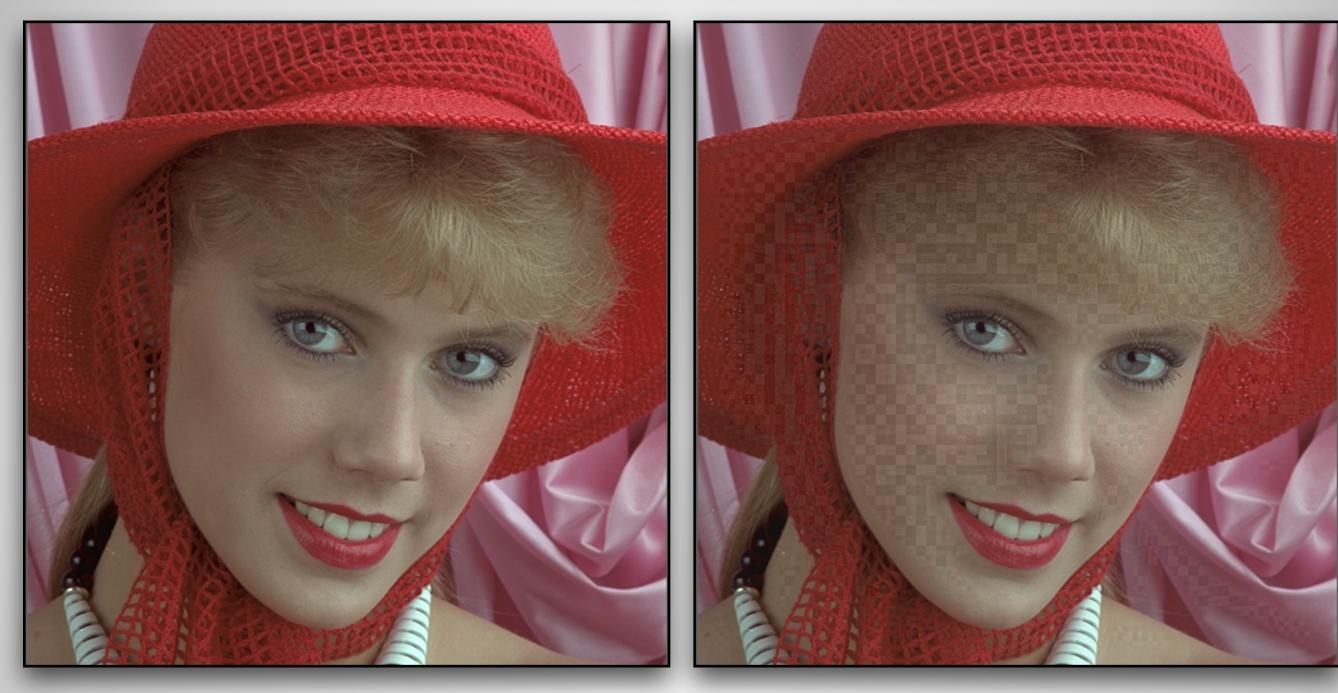
Min MS-SSIM on PSNR isocontour



Target

PSNR: 30dB MS-SSIM: 0.15

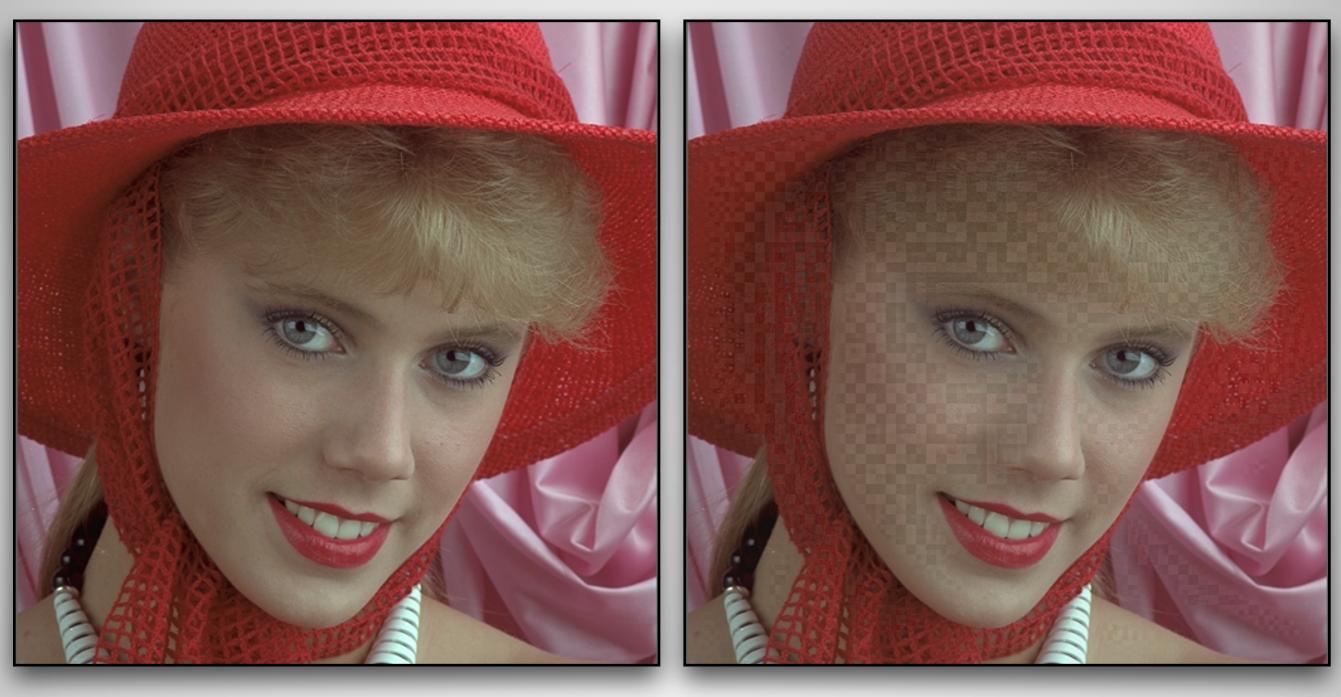
Min MS-SSIM on PSNR isocontour



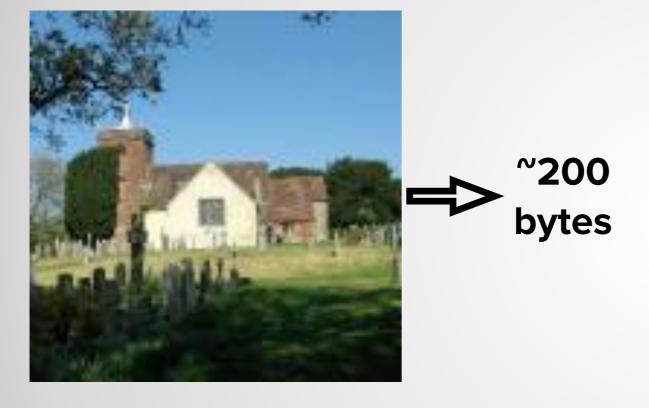
Target

PSNR: 40dB MS-SSIM: 0.90

Min MS-SSIM on PSNR isocontour

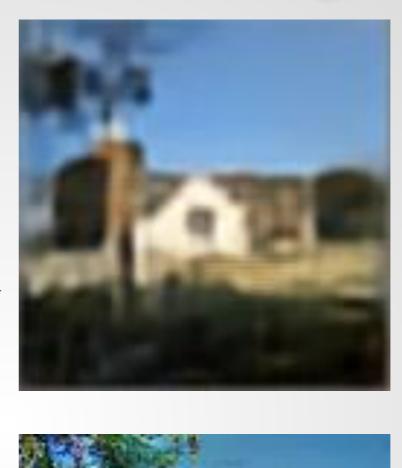


TargetPSNR:40dBMS-SSIM:0.90Idea 2: Maybe we should maximize both?



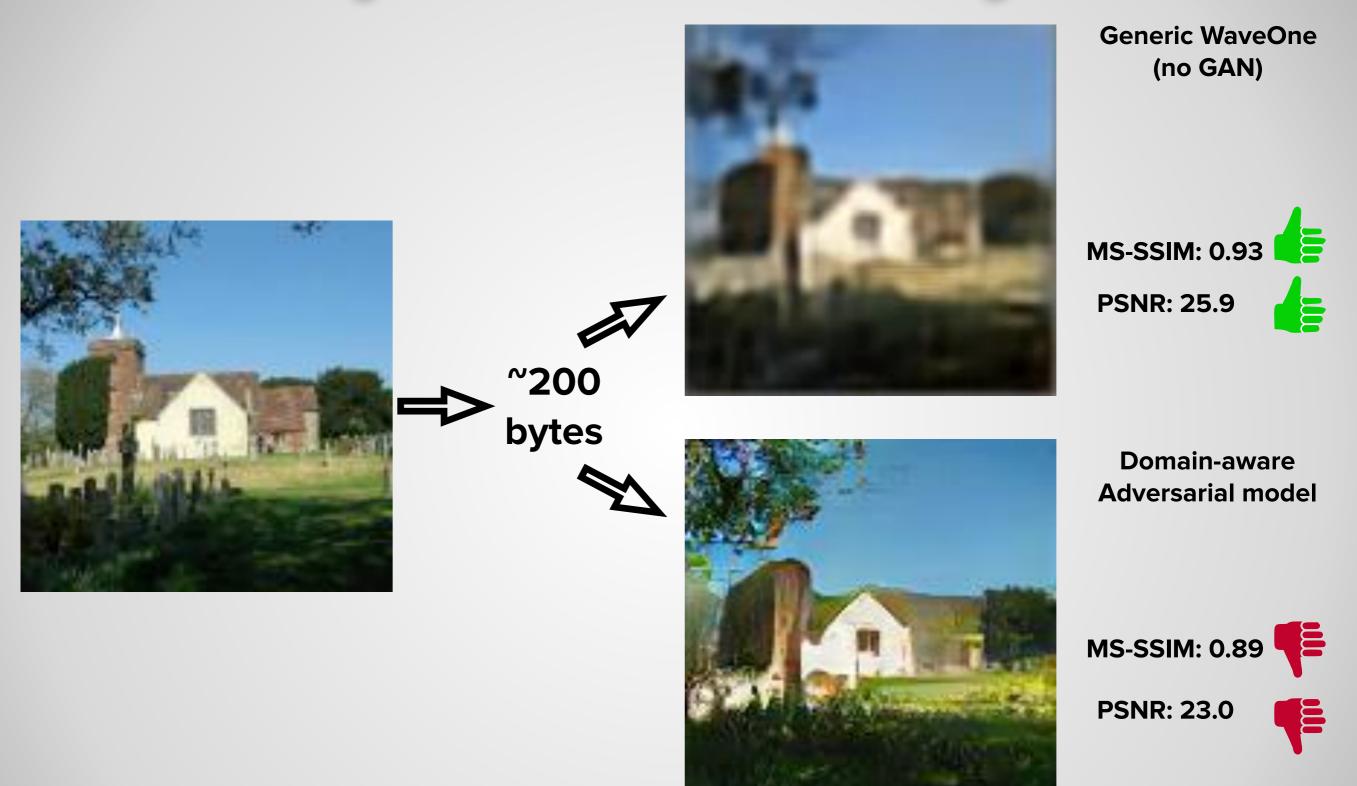
~200

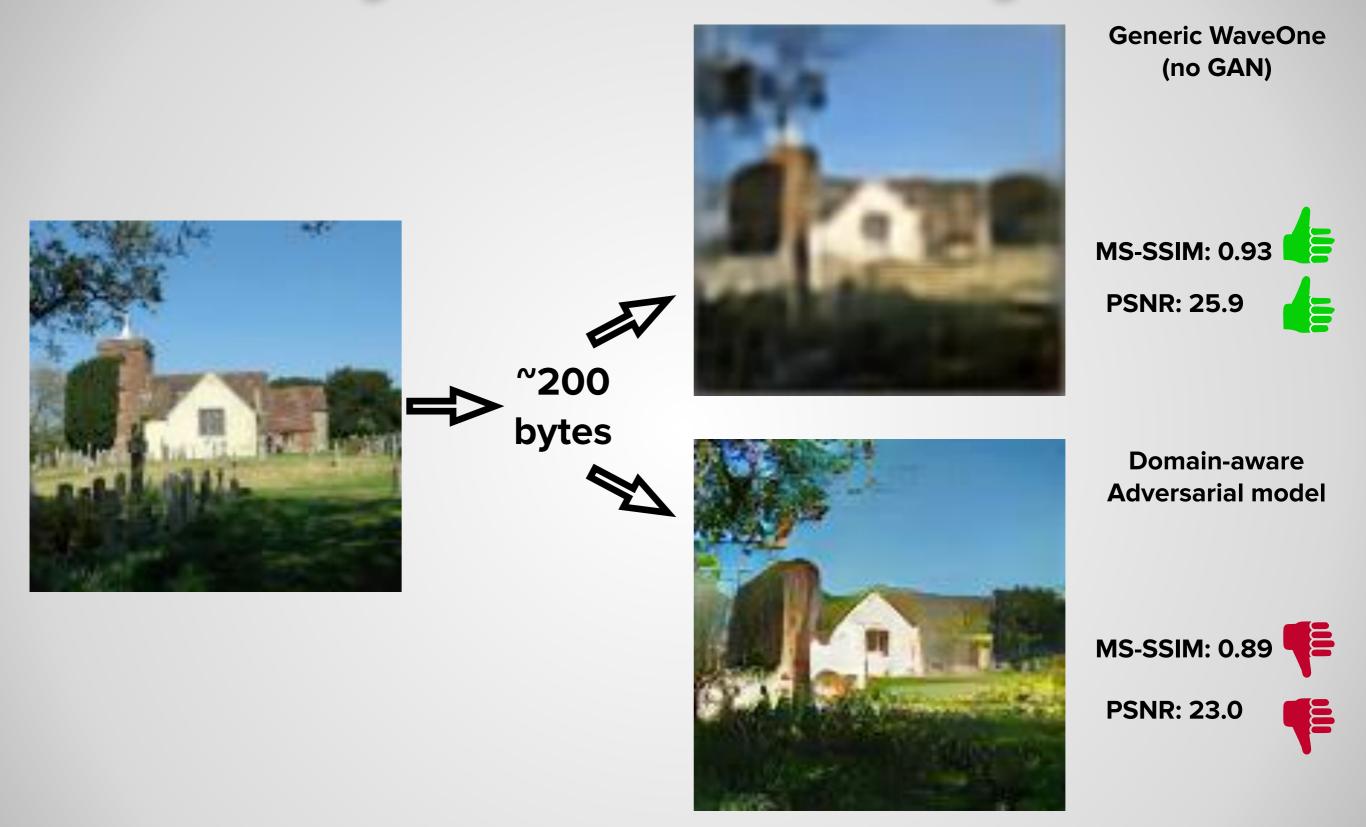
bytes



Generic WaveOne (no GAN)

Domain-aware Adversarial model





Idea 3: Maybe we should use GANs?

GANs are very promising

GANs are very promising

Reconstructions visually appealing (sometimes!)

Generic and intuitive objective:

 Similarity function of the difficulty of distinguishing the images by an expert

GANs are very promising

Reconstructions visually appealing (sometimes!)

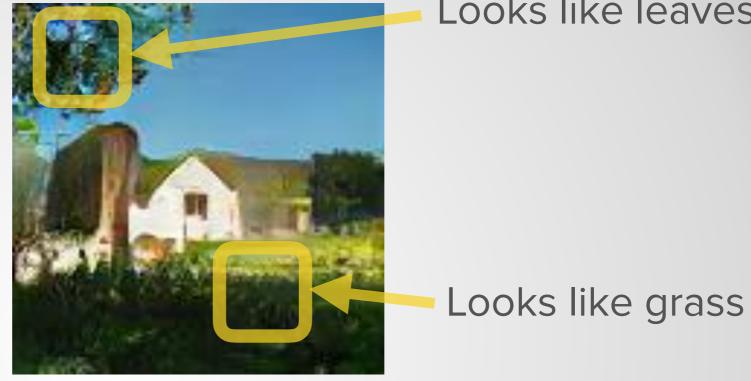
Generic and intuitive objective:

 Similarity function of the difficulty of distinguishing the images by an expert

Unfortunately the loss is different for every network and evolves over time

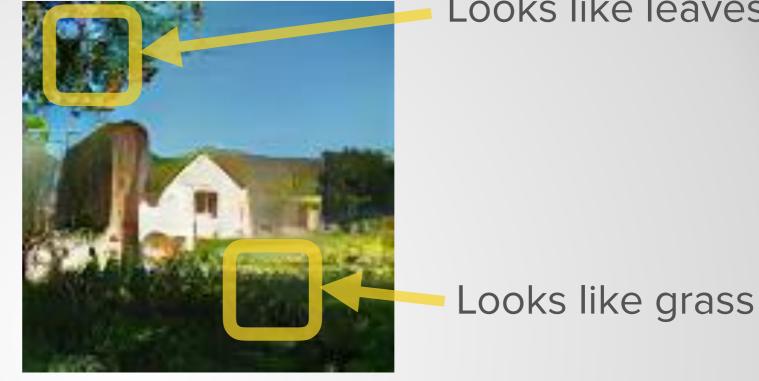
What makes people prefer the right image?

What makes people prefer the right image?



Looks like leaves

What makes people prefer the right image?

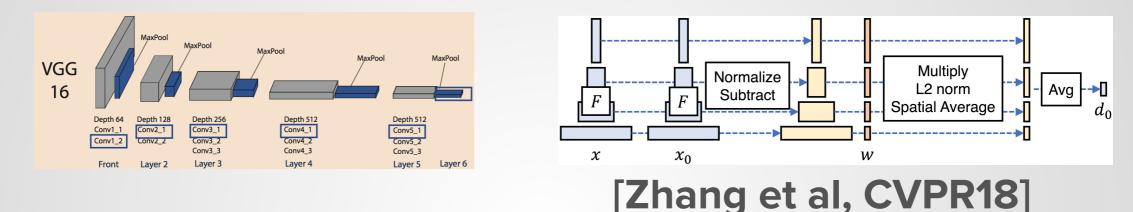


Looks like leaves

Idea 4: Maybe we should use semantics?

Losses based on semantics

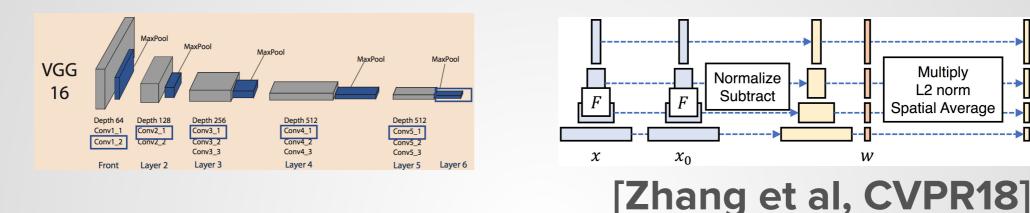
Intermediate layers of pre-trained classifiers capture semantics [Zeiler & Fergus 2013]



Significantly better correlation to MoS vs traditional metrics

Losses based on semantics

Intermediate layers of pre-trained classifiers capture semantics [Zeiler & Fergus 2013]



→[]

Avg

 Significantly better correlation to MoS vs traditional metrics

However, arbitrary and over-complete

- Millions of parameters
- Trained on unrelated task
- Which nets? Which layers? How to combine them?

Idea 5: Attention-driven metrics

Where the bandwidth goes

Where people look

Idea 5: Attention-driven metrics

Where the bandwidth goes

Where people look

All existing metrics treat every pixel equally

Clearly suboptimal

Idea 5: Attention-driven metrics

Where the bandwidth goes

Where people look

All existing metrics treat every pixel equally

Clearly suboptimal

But defining importance is another open problem

Idea 6: Task-driven metrics

A/B testing compression variants based on feature

- Goal: Social sharing
- Measure: user engagement

- Goal: ML on the cloud
- **Measure**: performance on the ML task

Idea 6: Task-driven metrics

A/B testing compression variants based on feature

- Goal: Social sharing
- Measure: user engagement

- Goal: ML on the cloud
- Measure: performance on the ML task

Solves the "right" problem

Idea 6: Task-driven metrics

A/B testing compression variants based on feature

- Goal: Social sharing
- Measure: user engagement

- Goal: ML on the cloud
- Measure: performance on the ML task

However, not accessible, not repeatable, not back-propagatable

Idea 7: when all fails, ask the experts

Idea 7: when all fails, ask the experts Humans are the gold standard for perceptual fidelity

Idea 7: when all fails, ask the experts

Humans are the gold standard for perceptual fidelity

Challenges

- Hard to construct objective tests
- Can't back-propagate through humans
- Expensive to evaluate (both time & money)
- Non-repeatable

"On a scale from 0 to 1, how different are these two pixels? Only another 999,999 comparisons to go!"

Conclusion

The impossible wishlist for ideal quality metric:

- Simple and intuitive
- Repeatable
- Back-propagatable
- Content-aware
- Efficient
- Importance-driven
- Task-aware

Conclusion

The impossible wishlist for ideal quality metric:

- Simple and intuitive
- Repeatable
- Back-propagatable
- Content-aware
- Efficient
- Importance-driven
- Task-aware

Improving quality metrics is critical in the neural net age

Conclusion

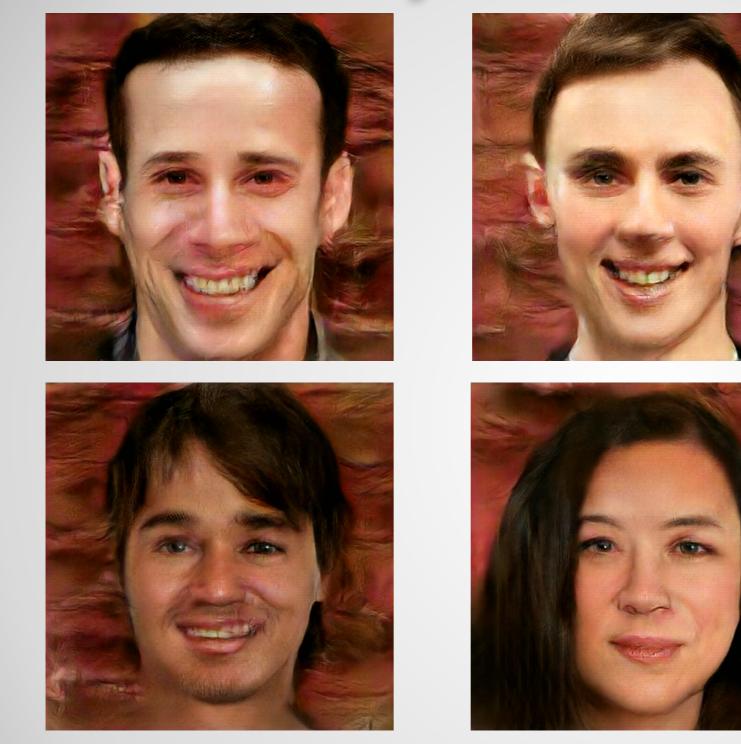
The impossible wishlist for ideal quality metric:

- Simple and intuitive
- Repeatable
- Back-propagatable
- Content-aware
- Efficient
- Importance-driven
- Task-aware

Improving quality metrics is critical in the neural net age

The wrong metrics lead to good solutions to the wrong problem!

Thanks to my team!



The WaveOne team, compressed to 0.01 BPP, using GAN specializing on frontal faces

http://wave.one VV WaveOne

