Recent Developments in Video Compression Standardization

CVPR CLIC Workshop, Salt Lake City, 2018-06-18

Jens-Rainer Ohm Institute of Communication Engineering RWTH Aachen University ohm@ient.rwth-aachen.de

Outline

- 1. Introduction and history of video coding standardization
- 2. Call for Proposals on Versatile Video Coding
- 3. Tools for improved compression
- 4. Methods related to deep learning

1. Introduction and history of video coding standardization

Recent developments in video compression standardization

Jens-Rainer Ohm Institute of Communication Engineering RWTH Aachen University ohm@ient.rwth-aachen.de

Motivation for permanent improvements in video compression

Video continually increasing by resolution

- HD, UHD (4Kx2K, 8Kx4K) appearing
- Mobile services going towards HD/UHD
- Stereo, multi-view, 360° video

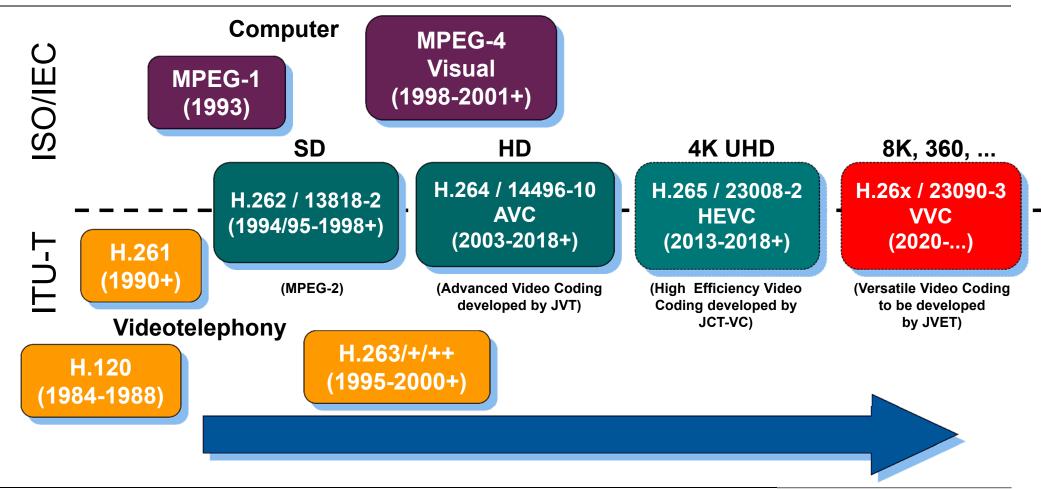
Video has multiple dimensions to grow the data rate

- Frame resolution, Temporal resolution
- Color resolution, bit depth
- Multi-view
- Visible distortion still an issue with existing networks
- Necessary video data rate still grows faster than feasible network transport capacities
 - Better video compression (50% rate of current HEVC) needed, even after availability of 5G
- Machine/computer vision applications are also hungry for more video data
 - For these, stability of feature recognition is probably more important than subjective quality

⁴ Recent developments in video compression standardization Jens-Rainer Ohm | RWTH Aachen University | Institut für Nachrichtentechnik | CVPR, 18.06.2018

ISO/IEC MPEG = "Moving Picture Experts Group"

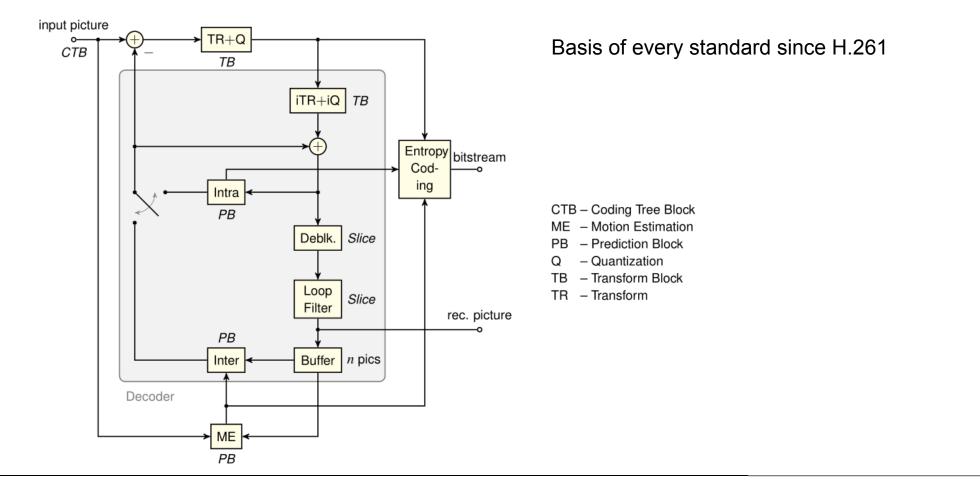
(ISO/IEC JTC 1/SC 29/WG 11 = International Standardization Organization and International Electrotechnical Commission, Joint Technical Committee 1, Subcommittee 29, Working Group 11)


ITU-T VCEG = "Video Coding Experts Group"

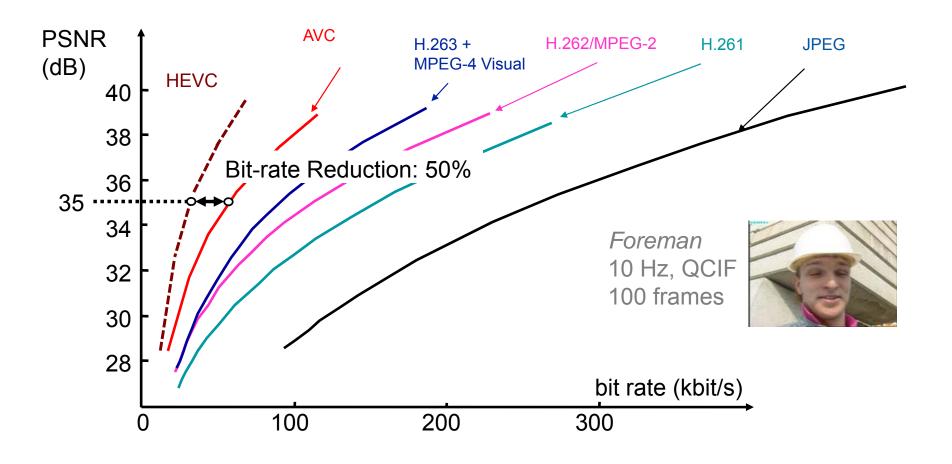
(ITU-T SG16/Q6 = International Telecommunications Union – Telecommunications Standardization Sector (ITU-T, a United Nations Organization, formerly CCITT), Study Group 16, Working Party 3, Question 6)

- JVT = "Joint Video Team" collaborative team of MPEG & VCEG, responsible for developing AVC (discontinued in 2009)
- JCT-VC = "Joint Collaborative Team on Video Coding" team of MPEG & VCEG, responsible for developing HEVC (established January 2010)
- JVET = "Joint Video Exploration Team" exploring potential for new technology beyond HEVC (established Oct. 2015) renamed to "Joint Video Experts Team" responsible for developing VVC from April 2018

History of international video coding standardization (1985 ~ 2020)


Recent developments in video compression standardization Jens-Rainer Ohm | RWTH Aachen University | Institut für Nachrichtentechnik | CVPR, 18.06.2018

6


Hybrid Coding Concept

7

Performance history of standard generations

Steps towards next generation standard – Versatile Video Coding (VVC)

• Experimental software "Joint Exploration Model" (JEM) developed by JVET

- Intended to investigate potential for better compression beyond HEVC
- Source code available from https://jvet.hhi.fraunhofer.de/
- Was initially started extending HEVC software by additional compression tools, or replace existing tools (see next 3 pages)
- Substantial benefit was shown over HEVC, both in subjective quality and objective metrics
 - Proven in "Call for Evidence" (July 2017)
 - JEM was however not designed for becoming a standard (regarding all design tradeoffs)
 - Call for Proposals was issued by MPEG and VCEG (October 2017)
- Call for Proposals very successful (responses received by April 2018)
 - 46 category-specific submissions: 22 in SDR, 12 each in HDR and 360° video
 - All responses clearly better than HEVC, some evidently better than JEM
 - This marked the starting point for VVC development

2. Call for Proposals on Versatile Video Coding

Recent developments in video compression standardization

Jens-Rainer Ohm Institute of Communication Engineering RWTH Aachen University ohm@ient.rwth-aachen.de

Performance

- Submissions had to provide coded/decoded sequences
 - 4 rate points each, two constraint conditions "low delay" (LD) and "random access" (RA)
 - SDR: 5x HD (both LD and RA), 5x UHD-4K (only RA)
 - HDR: 5x HD (PQ grading), 3x UHD-4K (HLG grading)
 - 360°: 5 sequences 6K/8K for the full panorama
- Double stimulus test with two hidden anchors HEVC-HM & JEM
 - Rate points were defined such that lowest rate was typically less than "fair" quality for HEVC, but still possible to code
 - Quality was judged to be distinguishable when confidence intervals were non-overlapping

Performance

- Measured by objective performance (PSNR), best performers report >40% bit rate reduction compared to HEVC, >10% compared to JEM (for SDR case)
 - Similar ranges for HDR and 360 $^{\circ}$
 - Obviously, proposals with more elements show better performance
 - Some proposals showed similar performance as JEM with significant complexity/run time reduction
 - 2 proposals used some degree of subjective optimization, not measurable by PSNR
- Results of subjective tests generally show similar (or even better) tendency
 - Benefit over HEVC very clear
 - Benefit over JEM visible at various points
 - Proposals with subjective optimization also showing benefit in some cases

Performance compared to HEVC

- How often are best performing proposals *better* than HEVC at higher rate?
- Note: R1≅1 Mbit/s; R2 ≅1.6 Mbit/s; R3 ≅2.8 Mbit/s; R4 ≅4.6 Mbit/s

P _{best} vs HM	R1 vs R2	R1 vs R3	R1 vs R4	R2 vs R3	R2 vs R4	R3 vs R4
SDR UHD	60%	40%	0%	80%	0%	20%
SDR HD/RA	40%	0%	0%	20%	0%	20%
SDR HD-/LD	40%	0%	0%	0%	0%	0%
HLG	67%	0%	0%	67%	0%	33%
PQ	40%	0%	0%	40%	0%	20%
360	40%	20%	0%	20%	0%	60%
Rate saving	~ 37.5%	~ 65%	~ 78%	~ 43%	~ 35%	~ 39%

Performance compared to HEVC

- How often is HEVC *better* than best performing proposals at lower rate?
- Note: R1≅1 Mbit/s; R2 ≅1.6 Mbit/s; R3 ≅2.8 Mbit/s; R4 ≅4.6 Mbit/s

HM vs P _{best}	R1 vs R2	R1 vs R3	R1 vs R4	R2 vs R3	R2 vs R4	R3 vs R4
SDR UHD	0%	0%	60%	0%	0%	0%
SDR HD/RA	0%	60%	100%	0%	80%	0%
SDR HD-/LD	0%	60%	80%	0%	80%	0%
HLG	0%	0%	100%	0%	67%	0%
PQ	0%	60%	100%	0%	60%	0%
360	0%	40%	80%	0%	40%	0%
Rate saving	~ 37.5%	~ 65%	~ 78%	~ 43%	~ 65%	~ 39%

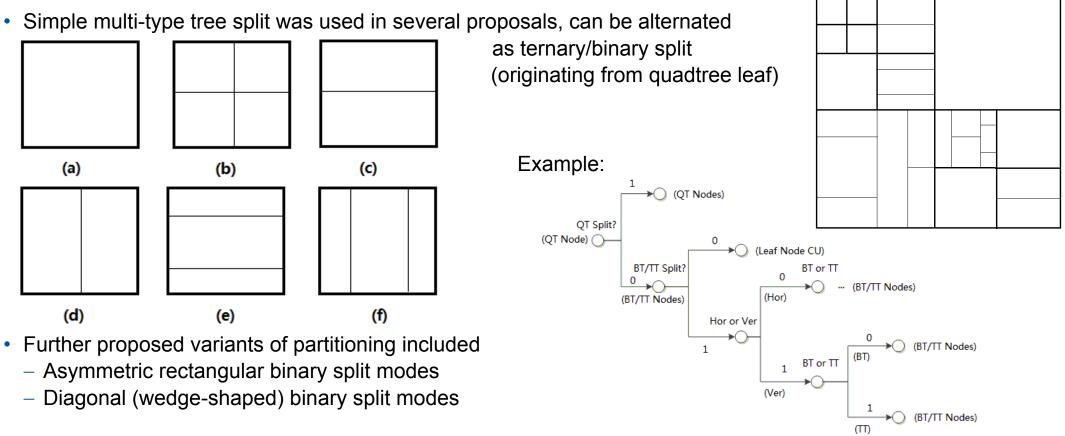
3. Tools for improved compression

Recent developments in video compression standardization

Jens-Rainer Ohm Institute of Communication Engineering RWTH Aachen University ohm@ient.rwth-aachen.de

What was proposed?

- In terms of large architecture: Most proposals similar, no deviation from hybrid coding mainstream
- Most improvements from further refinements of well-known building blocks of HEVC and JEM
 - Partititioning: Multi-type tree (Quad/binary/ternary), and finer
 - Intra prediction using
 - directional modes, DC and planar
 - sample smoothing with various adaptation methods
 - inheritance of chroma modes and chroma sample prediction from luma
 - Inter prediction using advanced motion vector prediction, affine models, sub-block partitioning
 - Switchable primary transforms, mostly DCT/DST variants
 - Secondary transforms targeting specific prediction residual characteristics
 - Adaptive loop filter based on local classification, some new variants
 - Quantization / context-adaptive arithmetic coding



What was proposed?

- Compression-improving tools:
 - Template matching tools (decoder side) for purposes of mode/MV derivation and sample prediction both in intra and inter coding
 - Finer partitioning: Asymmetric rectangular, geometric/wedge
 - Enlarged intra reference area & intra block copy
 - Additional non-linear, de-noising and statistics-based loop filters
 - Neural networks for prediction, loop filtering, upsampling
- HDR specific:
 - New adaptive reshaping and quantization, also in-loop
 - HDR-specific modifications of existing tools, e.g. deblocking
- 360-video specific:
 - Variants of projection formats, geometry-corrected face boundary padding
 - Modification and disabling of existing tools at face boundaries

New trend: More flexible block splitting

(source: JVET-J1002)

VVC Test Model and Benchmark Set

- VVC Working Draft 1 / Test Model 1 (VTM1): basic approach built on "reduced HEVC" starting point
- VTM Block structure
 - Unified multi-type tree (binary/ternary splits after quad-tree, coding block unites prediction and transform)
 - CTU size 128x128, rectangular blocks (dyadic sizes), smallest luma size 4x4
 - Maximum transform size 64x64

• VTM: Some removed elements of HEVC:

- Mode dependent transform (DST-VII), mode dependent scan
- Strong intra smoothing
- Sign data hiding in transform coding
- Unnecessary high-level syntax (e.g. VPS)
- Tiles and wavefront
- Quantization weighting

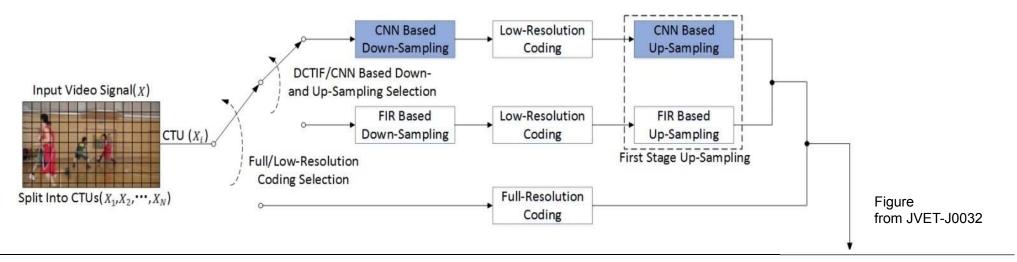
- Benchmark Set defined in addition to VTM, including the following well-known JEM tools:
 - 65 intra prediction modes
 - Coefficient coding
 - AMT + 4x4 NSST
 - Affine motion
 - Geometry transformation based adaptive loop filter (GALF)
 - Subblock merge candidate (ATMVP)
 - Adaptive motion vector precision
 - Decoder motion vector refinement
 - LM Chroma mode

Purpose: testing benefit of technology against better performing set

4. Methods related to deep learning

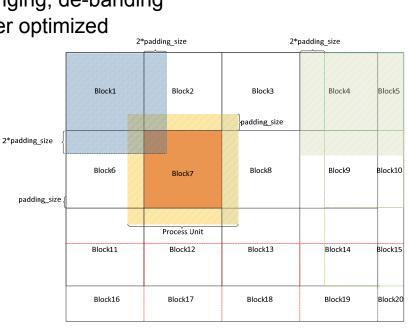
Recent developments in video compression standardization

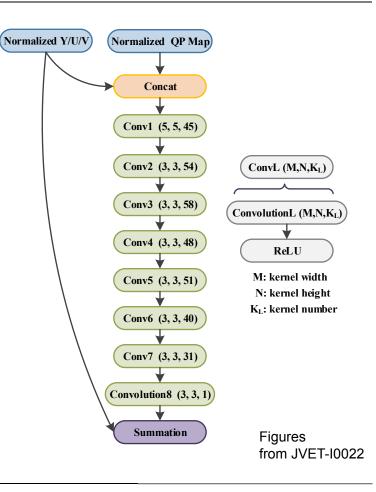
Jens-Rainer Ohm Institute of Communication Engineering RWTH Aachen University ohm@ient.rwth-aachen.de


NN for Video

- NN-based approaches were so far more successful in still image coding rather than video coding
 - Perceptual criteria also better understood for images
- In video coding, motion compensation is a most effective key component
 - Requires motion estimation for which "conventional" algorithms appear to be less complex
 - Analogy: Eye tracking the brain processes a motion compensated input
- CNN have been demonstrated to provide benefit in context of video coding for
 - Resolution up-conversion
 - Post-processing and loop filtering
 - Intra coding
 - Encoder optimization, in particular partitioning which is basically a segmentation problem

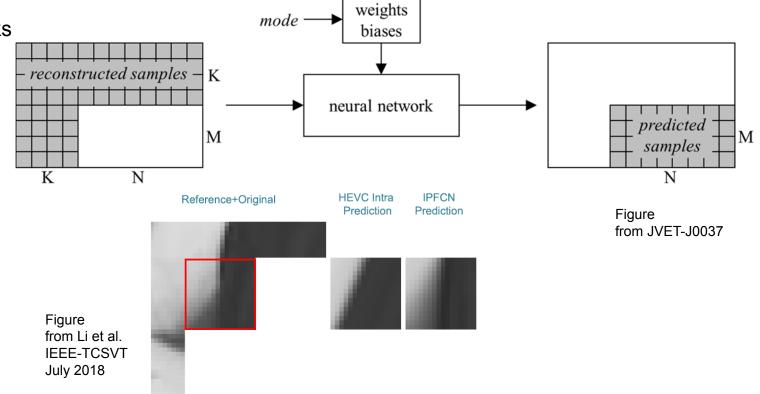
CNN for Resolution up-conversion


- Basic idea of dynamic resolution coding:
 - Downsample and code by lower resolution (less bitrate cost)
 - Upsample at decoder side to full resolution
 - Encoder decides using full res, conventional or CNN-based down- and upsampling
 - CNN-based could generate super-resolution upsampling, sharper edges, etc.
- · Can be implemented in combination with intra and inter prediction coding
- Operated on block by block basis



CNN for Loop filtering

- Loop filtering is common in video coding
 - removes compression artifacts from reconstruction
 - improves prediction from reconstructed frames
- Generally, signal-adaptive and non-linear filters
 - e.g., de-blocking, de-ringing, de-banding
 - edge-adaptive & Wiener optimized
 - bi-lateral filters
- ...
 CNN reconstruction provides additional gain (3-5% rate red.) and might replace some conventional filters
- Can be operated on block basis, parallel processing possible



Neural networks for intra prediction

- Neural networks were demonstrated to provide improved intra prediction, compared to conventional directional and planar modes
- Mostly fully connected networks have been used for this purpose (no convolutional layers)
- Average rate reductions of 4-5% (for intra coding) have been reported
- Examples of prediction demonstrate the benefit of non-linear processing

Summary and Outlook

- Video compression is a lively area of research, major and ongoing progress in standardization
- AVC became the most widely used standard worldwide
- HEVC has demonstrated significant technical and performance advance and is currently ramping up in markets
- The work of JVET has demonstrated that significant improvement of compression beyond HEVC is possible
 - Development of experimental JEM platform demonstrated initial benefit
 - Successful Call for Proposals unveiled that even better performance is possible
 - First steps towards VVC by establishing a first draft text and test model
- This is only the beginning
 - Additional benefit may come from other emerging technology, e.g. deep learning
 - Goal of 50% bit rate reduction with same quality as HEVC can probably be reached
 - Rigid process necessary to establish a reasonable tool combination

Further Information

- Document archives (publicly accessible)
 - http://phenix.it-sudparis.eu/jct
 - http://phenix.it-sudparis.eu/jvet
 - http://ftp3.itu.ch/av-arch/jctvc-site
 - http://ftp3.itu.ch/av-arch/jvet-site
- Software for VTM, HEVC, JEM, and 360 Video (publicly accessible):
 - https://jvet.hhi.fraunhofer.de/svn/svn_VVCSoftware_<VTM|BMS>
 - https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
 - https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/
 - https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/

