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Abstract

Traditional video coding standards, such as HEVC and
VVC, have achieved significant compression performance.
To further improve the coding efficiency, this paper
proposes an adaptive in-loop filter based on neural
network (NNLF) for VVC. Specially, the neural network of
NNLF mainly consists of residual blocks and
2-dimensional up-sampling convolution, which is
implemented in VVC Test Model (VTM) between
De-blocking and SAO. With CTU and frame level enabled
flags, NNLF result is adaptively applied in CTU and frame
reconstruction based on RDO and temporal id. The
proposed scheme has achieved good performance in
MS-SSIM in video compression track of challenge on
learned image compression (CLIC)[1]. Compared with
VTM-11.0, the proposed scheme not only has a smaller
data size, but also 0.219dB higher in PSNR and 0.00126
higher in MS-SSIM, which demonstrates the superiority of
our approach.

1. Introduction
The past few decades has witnessed the great progress in

video compression, and many video coding standards have
been released. Advanced Video Coding (AVC), High
Efficiency Video Coding (HEVC) are widely applied to
video compression and transmission, which greatly
promote the development of the video compression
techniques. 7 years after HEVC publication, Versatile
Video Coding (VVC) was finalized in 2020, providing
about 50% bit-rate reduction over its predecessor (HEVC).

In recent years, deep learning technology has not only
achieved great success in the field of artificial intelligence,
but also brought new development opportunities to the field
of video coding. More and more researchers have begun to
focus on combining deep-learning technology with
traditional video coding technology to improve video
compression performance.

In order to further enhance the quality of compressed
frames in VVC, a novel video compression method based
on neural network is proposed in this paper. To reduce the

compression artifacts and obtain compressed frames of
better quality, we design an adaptive in-loop filter based on
neural network to improve the quality of compressed
videos. The architecture of NNLF contains the residual
block (RB) and the 2-dimensional up-sampling convolution.
In addition, the NNLF is integrated into VTM-11.0 to serve
as a in-loop-processing module for better compression
quality. Experimental results demonstrate that the proposed
video compression approach can achieve good
performance in the validation sets of CLIC.

The remainder of this paper is organized as follows:
hierarchical B GOP structure and perceptual QP adaptation
(QPA) encoding method in VTM will be reviewed in
section II, and our video compression method based on
neural network will be concretely described in section III.
Experimental results will be presented and analyzed in
Section IV and the conclusion will be given in the Section
V.

2. Key Techniques in VTM
In video compression, GOP structure plays an important

role, which determines the temporal reference. Also, a
perceptual QP adaption (QPA) algorithm along with a
correspondingly weighted PSNR (WPSNR) distortion
measure is applied for improving subjective visual quality.
In this section. we will concisely review the above key
techniques in VTM.

2.1. Hierarchical B GOP Structure in VTM
For the random access configuration in VTM, a

hierarchical B GOP structure is used for encoding [2]. A
GOP size of 32 pictures is currently recommended in the
JVET common test conditions, as shown in Figure 1.

The non-intra pictures in a GOP are encoded as
B-pictures by default. The random access configuration
defines a hierarchy among different B pictures whereby
each hierarchical level is associated with a temporal
identifier. Pictures with lower temporal id are shown
towards the top in Figure 1 since they are used more often
as reference for inter coding . The arrows depict reference
frame of each picture with each arrow pointing to the
reference picture. Meanwhile, reference pictures of some of
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Figure 1. Hierarchical prediction structure in random access configuration

the pictures (but not all pictures) in the GOP are depicted
for simplicity. The picture at temporal id 0 (commonly
referred to as “Generalized B picture” or GBP) is used as
the lowest temporal layer that can refer to intra or inter
pictures for inter prediction. Low temporal layers (id 0 - 4)
consist of referenced B pictures, while the highest temporal
layer (id 5) contains non-referenced B picture only. For
GBP pictures, each reference picture list is configured with
four reference pictures and the two reference picture lists
are identical. For all other B pictures, there are two
reference pictures in each reference picture list.

The QP of each inter-coded picture is derived by adding
an offset to the base QP. The higher a picture’s temporal ID
is, the larger its QP offset.

2.2. Perceptual QP Adaptation Method
In VTM encoder, a perceptual QP adaptation (QPA)

algorithm along with a correspondingly weighted PSNR
(WPSNR) distortion measure is applied for improving
subjective visual quality [3]. In the algorithm, a
subjectively motivated block-wise weighted distortion
metric wD derived from a local visual activity value as
shown in the formula (1).
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CTUs) of the picture, indexed via k , kw is the perceptual

weight (also called visual sensitivity measure), ka is the

block’s visual activity, pica is the picture’s mean visual

activity, s and 's , are the original and reconstructed pel
values, respectively, of the picture’s luma component.

To determine the local visual activity ka of a block kB
at index k , the luma input samples s are subjected to a
9-tap square-shaped filter kernel having the coefficients
[–1, –2, –1, –2, 12, –2, –1, –2, –1].The “global” mean
visual activity value pica is determined empirically for the
purpose of controlling average bit-rate bias, as shown in the
formula (2):
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Where BD denotes the coding bit-depth.

Using wSSEDpic , the picture’s width W , height H and

component bit-depth BD , a weighted peak signal-to-noise
ratio can be obtained in the formula (3):
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Figure 2. Proposed video encoder with NNLF

Notice that, when 1kw for all blocks, this WPSNR
definition reduces to the conventional PSNR metric used by
the JVET. This is particularly true when 0 . In VTM,
the use of 5.0 was suggested. During encoding, the
perceptual QPA makes use of kw to adapt in each CTU at
k . The perceptually optimized QP and Lagrange parameter
based on the default pre-assigned fixed sliceQP and
Lagrange parameter slice is shown in the formula (4):

k

slice
kkslicek w

wQPQP 
  ],log3[ 2 (4)

Using the adapted kQP and k in each CTU block ensures
that, in terms of visual quality and WPSNR, the coding
distortion is optimally distributed within the given picture
and within the pictures of the video signal.

3. Adaptive In-Loop Filter based on Neural N
etwork (NNLF)

Since the block based hybrid coding structure is adopted
in VVC, major operations such as intra / inter prediction,
transform and quantization are performed block by block.
Consequently, the coding parameters vary by the blocks,
which leads to blocking effects. In addition, high frequency
components of the video will be lost during quantization
process, which results in ringing and blurring effects.
Aiming at eliminating these compression artifacts, an
adaptive in-loop filter based on neural network is designed
to improve the quality of compressed videos.

The proposed NNLF is located between de-blocking and
SAO stages as shown in Figure 2. The reconstructed frames

Figure 3. (a) NNLF architecture

Figure 3. (b) Residual block

are firstly filtered by de-blocking before processed by
NNLF, and SAO is employed after NNLF. During the
process of NNLF, whether to apply proposed filter is based
on the rate-distortion optimization (RDO) in CTU and
frame level.

3.1. Network Architecture
The architecture of proposed in-loop filter is shown in

Fig. 3 (a). The network mainly consists of residual blocks
and the 2-dimensional up-sampling convolution[4]. The
chroma samples are up-sampled from 64x64 to 128x128
and then concatenated with luma sample to form a
3x128x128 input features. In Fig. 3 (b), the RB contains
two 3x3 Convolution filter with K input/output features and
a rectified linear unit (ReLU) between them. In proposed
network, N and K are set equal to 20 and 64, respectively.

3.2. Training Process
The proposed network is trained with the UGC data-set

released by CLIC and DIV2K data-set[5]. The data set
images are encoded and decoded by VTM-11.0 after
converted into YUV420 format. In order to make NNLF
obtain stronger generalization ability, QPs for training are
set to 22, 27, 32, and 37. The reconstructed images are then
split into 128x128 luma and 64x64 chroma blocks.

3.3. Adaptive Application of NNLF based on RDO
The proposed in-loop filter based on neural network is
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implemented in VTM11.0 with CTU and frame level
enabled flags. If the frame level flag is turn-off, all CTU in
current frame are not applied with proposed filter. If the
frame level flag is turn-on, the CTU level flag is signaled to
indicate whether the proposed filter is applied.

The calculation method of the frame-level switch is
determined by the rate-distortion optimization as described
in the formula (5), where iD refers to the change in mean
square error distortion (MSE) of i-th CTU before and after
neural network filtering compared with the source pixels,
and n represents the number of CTU. If the rate-distortion
cost is negative, turn on the frame-level filtering switch,
otherwise turn off the frame-level filtering switch. For the
CTU level switch, only the change in the mean square error
distortion before and after the neural network filtering
compared with the source pixels is considered. If the
distortion after the neural network filtering is smaller, the
switch is turned on, and vice versa. Both frame-level
switches and CTU-level flags are coded into the stream.
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3.4. Algorithm Acceleration
In the proposed neural network in-loop filter, the change

of the neural network filter switch under the random access
configuration is explored. On the one hand, as the temporal
layer increases, the temporal information in the reference
frame is more fully utilized. The number of neural network
filtering blocks selected by the CTU switch gradually
decreases, and the quality improvement brought by neural
network filtering gradually decreases. On the other hand, as
quantization step size increases with the increase of the
temporal layer, the number of coded bits occupies more
proportion in the rate-distortion optimization and syntax
elements of CTU level flags bring more coded bits. After
weighting the two factors of complexity and performance,
we decide to turn off the frame-level NNLF where the
temporal layer ID is 4 and 5 to speed up the algorithm.
Because NNLF on those frames can only improve very
limited visual quality, and most of those frames are not
used as reference frames. Since the frames with frame-level
NNLF enabled only occupies 1/4 of a GOP, encoding and
decoding complexity of neural network loop filtering is
greatly reduced.

4. Experimental Results

4.1. Implementation
The NNLF is implemented on top of the VTM-11.0

reference software. In order to compare the performance
with the VTM-11.0, we adopt the same coding parameters

under the default configuration of RA, and perceptual QP
adaption is enabled. Then after converting the PNG images
in the validation set to YUV videos, we encoded them with
the above two different methods. Finally, coding
performance is compared in both PSNR and MS-SSIM.

4.2. Compression Performance
As shown in Table.1, it can be evidently found that not

only our proposed method has the smaller data size but also
has the higher PSNR and MS-SSIM than VTM-11.0, which
strongly proves the superiority of our method.

Table.1 The compression performance of in the validation sets of
CLIC

Method Data
Size(bytes) PSNR(dB) MS-SSIM

VTM-11.0 24817697 35.482 0.98621
Proposed 24729616 35.701 0.98747

5. Conclusion
In this paper, we propose an adaptive in-loop filter

based on neural network to improve the quality of
compressed videos. The network architecture mainly
consists of residual blocks and the 2-dimensional
up-sampling convolution, which is implemented in
VTM-11.0 with CTU and frame level enabled
flags.Through data training and accelerated optimization of
algorithms, this method has better performance in terms of
MS-SSIM than the traditional VTM-11.0 in the validation
sets of challenge on learned image compression (CLIC),
which demonstrates the superiority of our approach.
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