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Abstract

In this paper we present a lossy image compression
framework that makes use of a novel loss function. The
pipeline is based on a standard autoencoder architecture,
augmented with a system of hierarchical hyperpriors, a
powerful parallel-autoregressive context model based on
PixelCNN++, and a perceptual loss based on mean opin-
ion score (MOS) extracted from Mechanical Turk workers.
Our model is trained for human satisfaction over fidelity to
the original, achieving superior perceptual image quality.

1. Introduction
In many image-based tasks such as super-resolution,

noise removal and image compression, there exists a trade-
off between perceptual quality and distortion [7]. This is
well-understood for traditional reconstruction metrics such
as PSNR and MS-SSIM, which purely minimise distortion
at the cost of perception: as a consequence, reconstruc-
tions are blurry or present artifacts, and thus are not visu-
ally pleasing to humans, who tend to assess reconstructions
based on both similarity to the original image and aesthetic
quality.

Multiple alternative losses have been developed to alle-
viate this problem. Among these:

• The VGG loss [13], based on intermediate feature
maps of a trained VGG network [19];

• The Frechet Inception Distance (FID) [10], based on
the Inception classifier [20];

• LPIPS [22], where a binary classifier is trained on
human two-alternative forced choice (2AFC) between
two types of distortions;

• VMAF [15], the fusion of multiple hand-crafted met-
rics with a support vector machine.

The LPIPS approach has been shown to be more closely
correlated with real human opinion scores than other losses.

Hence, we created our own dataset of distorted images, la-
belled with scores from a study with Amazon Mechanical
Turk workers, and trained our model on this perceptual loss
in conjunction with MSE and an adversarial loss.

2. Proposed Method
Our model is based on [16], with an autoencoder where

the latent space is compressed using a joint hyperprior and
a fast autoregressive context model based on PixelCNN++.
We train this model using a combination of MSE, our own
custom LPIPS and adversarial training.

2.1. Main Auto-Encoder

The architecture we use is loosely based on [16]. Our
encoder network is composed of 6 convolutional layers with
384 5x5 filters each; we use GDN [3] as activation function,
and Channel Normalisation [8] as our normalisation layer.
The encoder downsamples twice by a factor of 2, resulting
in a latent with dimensions (12, H/4,W/4), where 12 is the
number of channels, H is the height of the input image and
W is the width.

We depart from the idea that the decoder architecture has
to be symmetric with respect to the encoder. In fact, our de-
coder contains 6 residual blocks [9], in addition to 4 convo-
lutional layers: we chose a more complex decoder because
it helps us obtain higher quality images under adversarial
training. Again, similarly to the encoder, we use GDN and
ChannelNorm, and we upsample twice with bilinear upsam-
pling operations.

2.2. Hyperprior Model

We use a hyperprior model based on [4]. As opposed
to [4], our hyperprior is hierarchical, containing two stages
with a hyperlatent and a hyper-hyperlatent.

The architecture of the hyperprior models is based on a
4-layer encoder and decoder. Similarly to the main autoen-
coder, we down/upsample twice, use GDN as the activation
function, and ChannelNorm as the normalisation layer.

The probability distributions we use as priors are Lapla-
cian. Furthermore, the prior on the highest hyperprior stage
has fixed parameters learnt over the training set.



2.3. Context Model

Many of the top-performing learnt compression models
include an autoregressive context model. These models are
generally very powerful but extremely computationally ex-
pensive (the model executes a forward pass for every pixel
in the latent space). We build on the context model used
in our entry in last year’s competition, PixelCNN++Lite, a
modified version of PixelCNN++ [18], and apply further
speed optimisation with the use of custom CUDA kernels.
As in last year’s entry, we only process the area equivalent
to the receptive field of the network, we use less layers for
each PixelCNN++ block, and use PReLU instead of the ex-
pensive Concat ELU activation function.

2.4. Quantisation Strategy

We add uniform noise to the latent spaces to simulate
quantisation at training time. There are other strategies for
quantisation, for example using a Straight-through Estima-
tor (STE) [6], or universal quantisation [1]. In practice, we
found that these alternative quantisation strategies do not
result in significant gains over adding uniform noise.

2.5. Perceptual and Adversarial Loss

In addition to MSE, we use a custom perceptual loss
based on LPIPS and an adversarial loss.

Our perceptual loss is based on the approach in [17],
where the authors describe a gap in performance between
the original LPIPS loss, with models that were trained on
a dataset with a large variety of distortions, and a custom
LPIPS loss with a model trained on compression-specific
distortions. We generate a set of distortions using both tra-
ditional image codecs such as JPEG [21] and BPG [5], and
learnt image compression models such as [4] and [16]; then
we conducted a 2AFC task with Amazon Mechanical Turk
workers to obtain binary labels to train our LPIPS backbone
network.

In addition, we perform adversarial training of the de-
coder against a discriminator network, whose objective is
to differentiate the reconstructed images against the origi-
nal, uncompressed images.

We use vanilla GAN losses with the non-saturating mod-
ification for the decoder/generator, as below:

LG = −Ex̃∼pG
[log(D(x̃))] (1)

2.6. Training Details

We train a separate model for each of the 3 image com-
pression tracks (0.075, 0.15 and 0.3 bpp), with different
trade-offs (lambdas) between rate and distortion. Further,
we train all models on randomised quantisation bin widths
in a certain range: this is done to have greater control over
the bpp achieved at inference time, which according to the
challenge rules has to be below a specific value.

Our models are trained on random 256x256 crops of im-
ages from an in-house dataset of high-quality pictures. We
use the Adam optimiser [12] with a step-down scheduler at
2, 4, 5 and 6 million iterations; we train for a total of 10
million iterations on a single Nvidia RTX Titan GPU.

2.7. Results

We beat the top 3 contestants from the CLIC 2020 com-
petition on perceptual losses (FID and all LPIPS variants),
while retaining the same bpp level. As expected from the
distortion-perception tradeoff, we do not achieve the high-
est scores on the distortion-oriented MS-SSIM and PSNR,
but we remain competitive against the past contestant. The
full performance numbers are in Table 1, and we addition-
ally show some reconstructed images in Figure 1.

2.8. Conclusion

We implemented a state-of-the-art pipeline for learnt im-
age compression, with perceptual quality exceeding the best
contestants from the CLIC 2020 competition.



Table 1. Performance numbers of our model, compared agains the top-3 contestants from last year’s challenge. Data removed for peer
review.

bpp PSNR MS-SSIM FID LPIPS-AlexNet LPIPS-VGG LPIPS-SqueezeNet

EIC-PQE (1st place) 0.14995 30.9148 0.951199 113.910 0.135044 0.292312 0.103417
EIC-E2E-P (2nd place) 0.14998 29.9135 0.970126 117.524 0.141426 0.288893 0.107844
neuro (3rd place) 0.13762 28.0021 0.968609 135.204 0.173581 0.310259 0.138446
ours (mid-bpp) 0.14983 29.7014 0.952857 108.904 0.058786 0.246854 0.060158

Figure 1. Reconstructed 512x512 center crops of images from the test set of CLIC 2020 dataset. From left to right: neuro [2] (3rd place),
EIC-E2E-P [14] (2nd place), EIC-PQE [11] (1st place), ours, original images.
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[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-

timating or propagating gradients through stochastic neurons
for conditional computation, 2013.

[7] Yochai Blau and Tomer Michaeli. The perception-distortion
tradeoff. CoRR, abs/1711.06077, 2017.

[8] Zhenwei Dai and Reinhard Heckel. Channel normalization
in convolutional neural network avoids vanishing gradients,
2019.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015.

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium, 2018.

https://bellard.org/bpg/


[11] Y. Kim, S. Cho, J. Lee, S.-Y. Jeong, J. S. Choi, and J. Do.
Towards the perceptual quality enhancement of low bit-rate
compressed images. In 3rd Challenge on Learned Image
Compression, 2020.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[13] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew P. Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, and Wenzhe Shi. Photo-realistic single image super-
resolution using a generative adversarial network. CoRR,
abs/1609.04802, 2016.

[14] J. Lee, D. Kim, Y. Kim, H. Kwon, J. Kim, and T. Lee. A
training method for image compression networks to improve
perceptual quality of reconstructions. In 3rd Challenge on
Learned Image Compression, 2020.

[15] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy,
and Megha Manohara. Toward a practical perceptual video
quality metric. https://netflixtechblog.com/
toward-a-practical-perceptual-video-
quality-metric-653f208b9652. Accessed:
2021-03-15.

[16] David Minnen, Johannes Ballé, and George Toderici. Joint
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