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Abstract

In this paper, we provide the description of our approach
for participating Workshop and Challenge on Learned Im-
age Compression (CLIC) 2021: SRCX DLIC. Our method
is an end-to-end network based on variational autoencoder,
for which we develop a novel back projection method
with attentional and multi-scale feature fusion. Our back
projection method recalibrates the current estimation by
establishing feedback connections between high-level and
low-level attributes in a discriminative and efficient manner.
Further, our network recovers the fine spatial details by
decomposing the input image and separately processing
the distinct frequency components, whose derived latents
are recombined using a novel dual attention module, so
that details inside regions of interest could be explicitly
manipulated. We also describe the training strategies for
variable bit-rates and perceptual quality enhancement.

1. Introduction
Lately, the demand for image compression has increased

dramatically to cope with the enormous amount of high-
resolution images. Based on deep neural networks (DNNs),
neural image compression has reinvigorated this domain
with its superb capacity to learn in a data- and metric-driven
manner, as opposed to their conventional counterparts [13].

Neural image compression typically employs autoen-
coders to model image down-sampling and up-sampling
as a unified task and optimize the rate-distortion trade-off
jointly. Such methods map the input image into a latent
intermediate via an encoder and inversely transform the
quantized latent back to generate the reconstructed image
on the decoder side. Many researches concentrate on
optimizing the network architecture, e.g., GDN [4], residual
blocks [22, 18], RNNs [23, 16, 24], to facilitate both decor-
relation and recovery of the image signal. Meanwhile, some
other works focus on further reducing the entropy of the
latent representations to attain fewer encoding bits. Earlier
works [6, 22] in this respect incorporated elementwise en-

tropy models to encode each element independently. Later
advancements introduced hierarchical hyperprior network-
s [5] and autoregressive components [14, 20] into the VAE
framework to explicitly estimate the entropy of the latent
representation by utilizing prior information. Currently, the
rate-distortion performance of the state-of-the-art methods
have surpassed that of reigning compression codecs, such
as BPG [7] and VVC [21], on both PSNR and MS-SSIM.

Nonetheless, existing schemes are limited in capturing
the mappings between the source image and its compact
form, leading to over-smoothed reconstructions at low
compression rates. One major issue is that, while the
autoencoder excels at extracting contextualized, non-linear
information for effective decorrelation, it stumbles in p-
reserving spatial image details that are crucial to faithful
reconstruction. In addition, the fact that the input image is
usually processed in its RGB format, in which these easily-
lost high-frequency details are mingled with large-scale
variations, makes it even harder for the network to preserve
or infer fine-grained details for optimal reconstruction.

In this paper, to enable mutual facilitation between low-
and high-level image properties, we replace the standard
feedforward up-sampling layers with a novel Attentional
Multi-scale Back Projection (AMBP) module. Our AMBP
module aggregates intermediate features from higher to
lower layers of the network, allowing it to attain semantical-
ly rich features, on the one hand, and extrapolate fine spatial
details, on the other. Retaining the desired properties of
both gives the network a greater flexibility to decide which
information should be preserved for better rate-distortion
trade-off. Our simplified design discards the iterative up-
and down-sample procedure [11, 17] by including both in-
scale and cross-scale feature fusion within one back projec-
tion step. To extract richer visual representations, we further
leverage a soft attention mechanism that consolidates the
input feature maps in a weighted average fashion.

Moreover, we propose to decompose the original image
by extracting and processing its frequnecy components sep-
arately so that the network could yield further efficiencies in
representation by exploiting different pieces of information
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Figure 1. Network architecture of the proposed method. Q denotes the quantization. ŷ and ẑ denote the quantized latent and the quantized
side information, respectively. P denotes the context model for estimating the entropy of ŷ. Gain and Inverse Gain denotes the gain unit
for continuously variable bit-rates control. ↑s and ↓s denotes down-sampling and up-sampling by a scale factor s, respectively, via residual
blocks. The black and red arrows in the attentional fusion block Ra denotes reweighting by W and (1 −W ), respectively. ⊗ denotes
element-wise multiplication.

that contains distinctive frequency characteristics. Besides,
to enhance the perceptual quality, we finetune the model by
adding lpips [25] to the loss function, which enforces the
network to focus on enhancing perceptual quality.

2. Proposed Method
2.1. Network Architecture

The network architecture is shown in Fig.1. The encoder
side of our design consists of a decomposition module, a
dual-branch encoder and a dual attention module. Instead
of processing the input image in its RGB form, we extract
its low- and high-frequency components and compress them
separately using the dual-branch encoder, in which each
branch contains four down-sampling modules/blocks and
two spatial attention modules/blocks in between [9]. The
down-sampled latents of the frequency components are then
rescaled and combined into the complete latent representa-
tion y via the dual attention module. The hyperprior model
and the context model follows the same design as [5]. The
single-branch decoder consisting of four AMBP module
that up-sample the quantized latent ŷ into the reconstruction
image. We further adopt dense connections where the
current AMBP module process the concatenation of outputs
of all previous modules [11]. Gain and Inverse-Gain refers
to the gain units used to accomplish variable bit-rates in a
single model [10].

2.2. Attentional Mutli-scale Back Projection

Back projection was first put forward in DBPN [11] for
image super-resolution. The back projection technique iter-
atively utilizes the feedback residual to refine HR images,

based on the assumption that the projected, down-sampled
version of a SR image should be as close as possible to the
original LR image. We extend the similar idea to image
compression task and construct our building blocks entitled
as the AMBP modules.

initial LR map
Ht

↑s

initial HR map
Ht+1

Rb

re-sampled LR map
Yt

↓s

updated LR map
Ĥt

Ra

updated HR map
Ĥt+1

re-sampled HR map
Yt+1

↑s

Figure 2. Illustration of the back projection procedure using
feature maps sampled from the decoder when reconstructing
kodim21.png. The updated HR map Ĥt+1 contains better defined
details than the initial HR map Ht+1.

Convolution layers of the autoencoder trade fine spa-
tial details for copious semantic information through the
repeated use of down-sampling operations, making it less
reliable for faithful image reconstruction. To address this
issue, AMBP aggregates multi-scale features across stages
in a trainable way. That is, the current stage features are
consolidated by the complementary information (spatially
accurate) from later computations. The refined feature
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maps in turn produce features of higher quality in the
next stage, thereby achieving progressive improvement to
the intermediate features that propagate throughout the
computation.

As shown in Fig. 2, our AMBP module refines a HR map
Ht+1, up-sampled from Ht, by applying reverse mapping
to recover its original resolution. Despite having the same
resolution, the re-sampled feature map Yt encloses details
from Ht+1 that are then integrated into Ht using a fusion
module Rb, and the updated LR map is up-sampled again
to yield a re-sampled HR map Yt+1. To facilitate in-scale
feature fusion, we leverage another fusion module Ra that
aggregates Ht+1 and Yt+1 to update the later as Ĥt+1 that
contains more detailed features. The described process can
be written as:

Yt =↓s (Ht+1) =↓s (↑s (Ht))

Ĥt = Rb(Ht, Yt)

Yt+1 =↑s (Ĥt)

Ĥt+1 = Ra(Ht+1, Yt+1).

(1)

The feature fusion is based on residual calculation. As
shown in Fig. 1, the residual fusion module Rb aggregates
Ht and Yt according to their residual et. Inituitively, the
residual et = Ht − Yt represents distinctive information
available in one source while missing in the other. The key
modification we made is to incorporate another attentional
fusion module Ra for the (Ht+1, Yt+1) pair. We leverage
channel attention [12] to capture the channel-wise depeden-
cies of the residual et+1 = Ht+1 − Yt+1 at a global scale,
and adopt a soft fusion scheme that reweights the respective
inputs by W and (1 − W ), where W is the normalized
attention map. The reisudal fusion modules is formulated
as:

Rb(Ht, Yt) = R(Yt +R(et))

W = S(R(et+1)) (2)

Ra(Ht+1, Yt+1) = R(W ⊗Ht+1 + (1−W )⊗ Yt+1),

where R denotes residual blocks, W denotes the attention
map, S denotes channel attention, and ⊗ denotes element-
wise multiplication.

The benefits of the additional feature fusion operations
are threefold. First, it further optimizes the re-sampled fea-
ture map Yt+1 and faciliates both in-scale and cross-scale
feature fusion without iterations. Second, the proposed soft
content selection scheme efficiently enables more adaptive
feature fusion by implictly reguarlizing the values of the
attention map. Third, fusion based on residual allows the
network to focus only on distinctive information, making
the gradient update better guided, and incorporating another
residual-based fusion operation could further accelerate the
training procedure.

2.3. Decomposition

“High-frequency content will get lost during sample
rate conversion”, as pointed out by the Nyquist-Shannon
Sampling Thorem. Decomposition could help alleviate this
issue by enabling the network to explicitly manipulate the
high-frequency contents.
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Figure 3. The frequency decomposition module, where the red
and blue arrows denote the low- and high-frequency components,
respectively

As illustrated in Fig.3, the low-frequency components
across scales are obtained using average pooling with
various kernel sizes. The high-frequency components are
attained by subtracting the corresponding low-frequency
component from the input image x. To produce the base
layer xb, we pass the concatenated low-frequency compo-
nents to a residual block. The detail layer xd containing
high-frequency information is attained in a similar way.
As the original image x also contains rich information,
it is concatenated with xb and xd and then processed
separately by the dual-branch encoder, which progressively
down-samples the respective components into their latent
representations ylf and yhf .
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Figure 4. Dual attention module. FC denotes fully connected
networks. The black and red arrows indicate multiplying the
feature map by the corresponding attention weight W and (1-W ),
respectively. GAP and GWP denote global average pooling and
global max pooling, respectively.

Afterwards, the latents ylf and yhf are aggregated using
a dual attention module (Fig.4). The latents of the respective
components are concatenated along the channel dimension
to produce feature map F , which is then transformed by
a residual block and passed to the channel and the spatial
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attention module. To reduce computation, the spatial atten-
tion module independently applies global average pooling
and global max pooling to F along the channel dimension
and concatenates the results to form feature map Fs ∈
RH×W×2, from which is the spatial attention map Ws ∈
RH×W×1 extracted. The channel attention feature map
Wc ∈ R1×1×C is generated using SE blocks [12]. We
adopt the soft selection trick to improve representations as
well. The low-frequency latent ylf is rescaled by Wc and
then Ws while the high-frequency latent yhf is rescaled by
(1 −Wc) and then (1 −Ws). The re-weighted latents are
then summed to yield the final latent representation y.

2.4. Variable Bit Compression

Considering the bit-rates constraint, we adopt the gain
units [10] to achieve continuously variable rate with a single
model. As shown in Fig.1, the gain unit and the reverse gain
unit are added after the encoder and before the decoder,
respectively. The pairs are inserted into the hyperprior
model in a similar manner.

2.5. Finetune Strategies

Enhancing the perceptual quality of our method is imper-
ative, as the challenge performs evaluation based on human
perception. Thus, we finetune the decoderD in our baseline
model by incorporating the up-to-date perceptual loss -
LPIPS [25] to improve the perceptual quality. Besides, we
notice that the reconstruction quality could be considerably
enhanced by decoding the original rather than quantized
latent without tuning, so we added a rounding loss dr =
MSE(y, ỹ) to the loss function, where ỹ is the updated
latent map by the residual fusion module. Inituitively,
variations of a pixel’s neighboring pixels in the high-
resolution map could help the network infer the pixel’s
value before quantization. The loss function for finetuning
becomes:

Lf = d(x, x̂) + β · dr + γ · dlpips, (3)

where β and γ controls the weight of the rounding loss term
and perceptual loss term.

3. Implementation Details and Results
We trained the proposed networks using cropped images

of size 256x256 from DIV2K [2], Flickr2K [15], and CLIC
training dataset [1] without augmentation. Formulating E,
D and P (y) in our network allows them to be trained jointly
by minimizing the rate-distortion trade-off:

L =

n∑
i=0

λi · d(x, x̂) +R, (4)

where d represents distotion, R represents the required
number of bits, and λi represents the index of the gain

vectors in the gain metrix [10]. We used the Adam algo-
rithm to jointly optimize the networks for 1.2M iterations
with a mini-batch size of 4. The initial learning rate
was set to 1 × 10−4 and decreased to 5 × 10−5 at 800k
iterations. The networks were optimized with respect to
two quality metrics, i.e., mean square error (MSE) and
multi-scale structural similarity index (MS-SSIM). The
distortion d is defined as d = MSE(x,x̂) and d = 1 - MS-
SSIM(x,x̂), respectively. When optimized by MSE, the
value of λ belongs to the set {0.0004, 0.0025, 0.009},
{0.0009, 0.0085, 0.02}, {0.005, 0.009, 0.045} for the three
different bit-rates, respectively. As to networks optimized
for MS-SSIM, the value of λ belongs to the set {1, 4, 9},
{2, 10, 32}, {10, 35, 120} for the three different bit-rates,
respectively. After that, we finetuned the decoder for 500k
iterations at the learning rate 5×10−5, the coefficient β and
γ was set to 1 and 100 for MSE optimized model.

The results on CLIC validation dataset are summarized
in Table 1, we could attain the bit-rates close to the
constraint value through the gain unit. It can be seen that,
while MSE optimized models attain higher PSNR than MS-
SSIM optimized models, they decode images of lower MS-
SSIM in comparison. Further, finetuned models achieve
higher perceptual scores (in this case, the lower the lpips the
better), which suggests the effectiveness of our strategies in
enhancing the perceptual quality of reconstructed images.

Table 1. Results on CLIC validation dataset.
Method BPP PSNR MS-SSIM lpips

MSE
Optimized

0.0732 27.836 0.9279 0.1676
0.1481 30.825 0.9605 0.0946
0.2964 34.014 0.9783 0.1059

Fintuned
MSE
Optimized

0.0732 26.866 0.9513 0.1602
0.1481 29.124 0.9694 0.0927
0.2964 30.355 0.9799 0.1013

MS-SSIM
Optimized

0.0743 26.375 0.9555 -
0.1475 28.621 0.9718 -
0.2974 29.819 0.9813 -

4. Conclusion

In this paper, we propose a neural image compression
scheme using back projection techniques and frequency
decomposition. We reformulate the iterative projection
operations into a multi-scale feature fusion module and
incorporate channel attention with soft content selection.
We also enable the network to focus on respective frequency
components of the input image via decomposition, where
their derived latents are adaptively rescaled and integrated
using an efficient dual attention module. Further, we adopt
a finetune strategy that helps enhance the perceptual quality
and reduce the latent reisudal.
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