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Abstract

This paper presents a detailed description on our sub-
mitted method ANTxNN PSNR to Workshop and Challenge
on Learned Image Compression (CLIC) 2021. Our method
mainly incorporates the Enhanced Spatial Attention Block
(ESA) to previous hierarchical grouped residual dense net-
works (HGRDN) as a post-processing quality enhance-
ment for VVC intra-frame coding. Besides, we use a
combination of multiple perceptual losses in RaLSGAN,
for perceptual quality enhancement. Experimental results
have demonstrated that our approach achieves 30.137dB,
32.473dB, 35.307dB in terms of PSNR at the rate con-
straint of 0.075bpp, 0.15bpp and 0.30bpp on CLIC valida-
tion dataset, respectively.

1. Introduction
Image compression is a fundamental technique to re-

alize efficient data transmission and data storage. After
great efforts of many decades, conventional compression
algorithms have been finalized into standards and are in a
wide use in industries. Recently, Joint Video Experts Team
(JVET) has released a new-generation video coding stan-
dard named Versatile Video Coding (VVC/266) [1], which
has just been finalized in July 2020. VVC/266 is expected to
provide around 50% bit-rate saving at the same subjective
visual quality over its predecessor, High Efficiency Video
Coding (H.265/HEVC)[2].

However, due to the hand-crafted designs of conven-
tional codecs, high compression ratio inevitably results to
visible artifacts such as blocking artifacts, ringing effects
and blurring. Recent research has started to apply deep
learning techniques to address the issue of artifact reduc-
tion and quality enhancement. Yu [3] designed an AR-CNN
to reduce the coding artifacts and showed a rate-distortion
improvement in terms of PSNR and SSIM. In [4], hierarchi-
cal grouped residual dense network (HGRDN) architecture
is proposed to efficiently remove artifacts from VVC intra

coding. Our method further improves the perceptual quality
and PSNR on the basis of HGRDN by incorporating the En-
hanced Spatial Attention Block (ESAB) [5] to HGRDN. We
use the network in [6] as our baseline and the main revisions
of this paper can be summarized as follows:

• In the architecture of GRDB [6], features are concate-
nated, while we use dense connection to preserve all
the feature-maps in preceding layers. Dense aggre-
gation is flexible for multi-level feature learning [7].
In our experiment, using dense GRDB can improve
PSNR.

• We integrate ESA blocks at the end of the residual
blocks to force the features to put more attention on
the regions of interest for quality enhancement.

• We use a combination of multiple perceptual losses
in GAN learning, and each loss function provides an
unique perspective on GAN-based perceptual quality
enhancement.

2. Proposed Method
2.1. Network and Loss

In our proposed framework, a raw image is encoded us-
ing VVC intra coding and then the network based quality
enhancement process is followed. The networks used in the
quality enhancement are trained toward the coding artifact
reduction.

The network architecture is shown in Fig. 1. The
HGRDN mainly consists of several grouped residual
dense connections (GRDB), a down-sampling layer, a up-
sampling layer, and a convolutional block attention module
(CBAM) [8] layer. The GRDB is consisted of four residual
dense block (RDB). In order to make the residual features
to be focused on spatial contents of key importance, we uti-
lize the enhanced spatial attention (ESA) block, referring to
[5]. The ESA mechanism works at the end of the residual
dense block to force the features to put more attention on
the regions of interest.
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Figure 1: The HGRDN architecture, where k, n, s represent the size of convolution kernel, the number of feature maps and
the size of convolution stride, respectively. We use dense HGRDB here. The GRDB module is depicted in Fig. 2.

C
on

v-
in

R
D

B
1

R
D

B
2

G
R

D
B

d+
1

R
D

B
3

R
D

B
4

G
R

D
B

 d
-1

C
on

vk
1n

64

Figure 2: The dense GRDB architecture. The structure of
RDB is exactly same as the structure of GRDB, except that
the RDB is replaced by ESA module. ESA module is de-
picted in Fig. 3
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Figure 3: Left: The enhanced spatial attention (ESA) block.
Right: Details of the ESA mechanism.

To train our quality-enhancement network, the loss func-
tion is defined as follows:

Lp = E [‖(x̂i)− (xi)‖] (1)

where x̂i and xi are compressed images by the VVC en-
coder and uncompressed raw images, respectively. E[·] rep-
resents the expectation that has applied to the batch data.
Instead of mean square errors, we use L1-norm to be con-
sistent with [6].

Meanwhile, to improve perceptual quality, we also op-
timize our enhanced HGRDN model using RaLSGANs,
referring to [9]. The loss function will be accordingly

changed to:

Lg =αLcharbonnier + βLvgg + γLgram + δ(

E[(d(x̂)− E[d(x)]− 1)2] + E[(d(x)− E[d(x̂)] + 1)2])

Ld =E[(d(x)− E(d(x̂))− 1)2] + E[(d(x̂)− E(d(x)) + 1)2]

where Lcharbonnier is a Charbonnier loss between enhanced
images and raw images. Lvgg denotes the L2-norm between
features from VGG-19 model. Lgram represents the gram
matrix of feature layers multiplied on transposed self and
features are also from VGG-19 model. Other parts are cor-
responding to Relativistic average Least Squares GANs and
d(·) denotes the output of discriminator .

2.2. Implementation Details

To implement the proposed framework, we integrated the
VVC Test Mode (VTM) [10] version 10.1 with the opti-
mized HGRDN. The Adam [11] optimizer is employed with
β1 = 0.9 and β2 = 0.999. We initialize the learning rate to
1 × 10−4 and halve over every 50000 iterations. Total iter-
ation is 300k.

The training dataset we used is a 2K resolution high-
quality DIV2K dataset [12] with 800 images. The origi-
nal images are first converted into YUV420 and encoded
by VTM with all intra configuration setting. For the tar-
geted low bit-rate (0.075 bpp) network training, the quan-
tization parameter (QP) is ranging from 42 to 41. For the
targeted medium bit-rate (0.15 bpp) network training, the
QP is ranging from 38 to 36. For the targeted high bit-rate
(0.3 bpp) network training, the QP is ranging from 32 to 30.
Next, data augmentation with random 90◦, 180◦ rotations
and horizontal flips is performed to these reconstructed im-
ages. After data augmentation, the reconstructed images are
converted again into RGB format. Then image patches with
size 96× 96× 3 are randomly cropped from these samples
and fed into the network.
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3. Results

In this section, experimental results and ablation studies
are presented. We have shown the results of our submit-
ted methods and HGRDN method in [6] on CLIC valida-
tion dataset in Table. 1. Experimental results in Table. 1 are
optimized by loss function Lp only. Table. 2 shows the re-
sults optimized by loss function Lg and Ld. The first three
rows in Table. 2 is optimized by loss function Lg and Ld
and the last three rows in Table. 2 is optimized by loss func-
tion Lp. Besides, we conducted an experiment to find out
best setting of our proposed method. Table. 3 shows the ex-
perimental results on different settings, including the num-
ber of GRDB, the architecture of GRDB, number of RDB,
and image patch size. The rate we used in ablation study is
0.15bpp. As shown in Table. 3, the dense GRDB architec-
ture is better than merge GRDB (i.e. concatenated features).
Meanwhile, deepening the network does not significantly
improve the quality.

Table 1: Results of our submitted methods ANTxNN PSNR
using Lp.

Model PSNR Rate (bpp)
ANTxNN PSNR 35.307 0.30
ANTxNN PSNR 32.473 0.15
ANTxNN PSNR 30.137 0.075

HGRDN 35.255 0.30
HGRDN 32.456 0.15
HGRDN 30.108 0.075
VTM10.0 35.145 0.30
VTM10.0 32.356 0.15
VTM10.0 29.989 0.075

Table 2: Results of our submitted methods ANTxNN PSNR
using Lg and Ld.

Loss MS-SSIM FID Rate (bpp)
Lg,Ld 0.974 161.698 0.30
Lg,Ld 0.953 182.386 0.15
Lg,Ld 0.927 201.466 0.075
Lp 0.979 212.613 0.30
Lp 0.965 237.817 0.15
Lp 0.942 276.100 0.075

Table 3: Ablation studies.
CGRDB NGRDB NRDB patch size PSNR
merge 4 4 96 32.455
dense 4 4 96 32.473
dense 8 4 96 32.396
dense 4 8 96 32.474
dense 4 4 128 32.470

4. Conclusion
This paper presents a detailed description on our submit-

ted method ANTxNN PSNR to Workshop and Challenge
on Learned Image Compression (CLIC) 2021. Our method
mainly incorporates the Enhanced Spatial Attention Block
(ESA) to previous hierarchical grouped residual dense net-
works (HGRDN) as a post-processing quality enhancement
of VVC intra-frame coding. Besides, we use a combination
of multiple perceptual losses in GAN for perceptual qual-
ity enhancement. Experimental results can further improve
PSNR compared to HGRDN.
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