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Abstract

This paper presents an end-to-end Artificial Neural Net-
work (ANN)-based compression framework in response to
the video compression task of the Challenge for Learned
Image Compression (CLIC) at CVPR 2021. In this frame-
work, the video frames are divided into Groups Of Pic-
tures (GOPs) in which each frame can be encoded in In-
tra or Inter mode. In Intra mode, an auto-encoder com-
presses the pixel values directly. For Inter frames, we
leverage bi-directional prediction with reference frame sig-
nalling, allowing for efficient hierarchical GOP temporal
structures. The motion information, computed using the
luminance, and prediction residuals are compressed using
dedicated auto-encoder structures, in which the layers are
conditioned based on the GOP structure. The network is
trained fully end-to-end, from scratch. The results demon-
strate the promises of end-to-end approaches.

1. Introduction
Artificial Neural Networks (ANN) have successfully re-

placed handcrafted descriptors and classical algorithms for
a large number of computer vision applications. In the do-
main of image compression, recent state-of-the-art ANN-
based methods [10] show promising performances, as they
now compare with the best performing traditional codecs,
such as the video compression standard H.266/VVC [3]
in still picture mode. Digital video compression has seen
a huge industrial effort over the last 30 years, leverag-
ing competition in standardization activities to optimize
inter-operable standards. State-of-the-art standards such as
H.265/HEVC [12], H.266/VVC [3] or AV1 [5] are the re-
sult of years of research and iterations over the success-
ful hybrid coding approach. In this context, images and
video frames are partitioned into non-overlapping rectan-
gular blocks of different sizes and shapes. Temporal and
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spatial redundancies are reduced by performing Inter frame
and Intra frame predictions, respectively. Then, spatial fre-
quencies of the prediction residuals are decorrelated using
linear transforms. The obtained coefficients are quantized
and entropy coded alongside the necessary metadata which
signals all the decisions made by the encoder, such as pre-
diction modes, partitioning, frame inter-dependencies, etc.

Even though ANN-based methods now seem ubiquitous
in computer vision, their usage in image and video com-
pression is fairly recent, but has shown a promising curve
of performance improvement over the past couple of years.
Neural networks can complement or replace parts of the ex-
isting hybrid video coding approach or be trained end-to-
end to directly encode and decode images or videos. In the
first approach, one or several modules of traditional codecs
can be replaced by neural network-based methods, such as
post filters, intra or inter predictions, or transforms. For in-
stance, the Joint Video Exploration Team, which designed
H.266/VVC is experimenting with ANN-based loop filters
that could replace or enhance existing deblocking filters,
Sample Adaptive Offsets or Adaptive Loop Filters.

The end-to-end approach consists in designing a neu-
ral network based video compression codec, disrupting the
hybrid model of traditional codecs, which remains highly
challenging. In this paper, we present a framework tak-
ing on this second approach in which a series of ANN-
based autoencoders are trained end-to-end to efficiently
compress videos. In particular, the proposed method imple-
ments a conditional bi-directional prediction scheme, lever-
aging well-studied hierarchical temporal structures to re-
duce inter-frame redundancies. Several works have been
previously published regarding neural networks targeting
video compression [6, 9, 1]. These approaches consider a
temporal structure referred to as a Low Delay configuration,
where directly neighboring causal frames are considered for
inter prediction. Like in [14], our proposal explores bi-
directional prediction and hierarchical GOP (Group Of Pic-
ture) structures, while considering a different model struc-
ture from the recurrent approach in [14].
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The remainder of the paper is organized as follows. In
Section 2, we describe the proposed methods and tempo-
ral structure for efficient compression. Then, we describe
the experimental setup, including implementation and train-
ing details in Section 3, before discussing the corresponding
tests and results in Section 4.

2. Proposed Architecture

The proposed network is composed of 3 parts, all au-
toencoders, an intra module to encode the keyframes, an
inter module to jointly estimate and compress the motion
information, and a residual module to learn and encode ef-
ficiently a compensation for the prediction error.

2.1. Intra and Inter coding of the video frames

The architecture described in the paper is based on the
low-delay network proposed in [1], extended to efficiently
perform bi-directional prediction, and to directly support
the YUV 4:2:0 frame format.

The image and residual autoencoders structure is in-
spired by the proposal described in [8], that is able to han-
dle YUV 4:2:0 format, where the surface of the chromi-
nance channels is a fourth of the surface of the luminance.
Figure 1 shows the decoder process in the case of an Intra
coded frame. The bitstream is first parsed and the latent
tensor of M channels is entropy decoded. Then, a series of
transpose convolutions with ReLU activations and N chan-
nels are applied. When a tensor has the spatial dimension
of the chroma components, i.e. N × h/2 × w/2, a 1 × 1
convolution with 2N output channels is applied. The out-
put tensor is then split into 2 parts of N channels each so
that different final layers can be applied to luminance and
chrominance. The last layer of the luminance channel ap-
plies a transpose convolution with a stride of 2 and an out-
put of 1 channel, whereas no stride is needed to output the
2 channels of chrominance. As in other auto-encoder solu-
tions, the encoder symmetrically produces and entropy en-
codes a latent representation derived from the input content
using a fully convolutional approach.

In inter mode, the frames can be predicted from previ-
ously decoded frames. The elements to encode for each
frame consist of a motion flow, residual and metadata to
signal which reference frames are used. The residual corre-
sponds to the prediction error, it has the same shape as the
input image and can be encoded and decoded the same way
as for the Intra mode described above. The motion flow cor-
responds to a map of pixel displacements which is used to
warp the reference frames onto the current picture to pre-
dict. In the next section, we detail how these elements are
computed and compressed.

Figure 1. Example decoder architecture for YUV 4:2:0 output for-
mat (intra and residual).

2.2. Estimating and encoding the motion from the
luminance channel

We propose to compute the motion information using the
luminance component only. The luminance and the chromi-
nance of the reference image are then warped onto the cur-
rent frame separately to form the prediction. When repre-
senting frames in the YUV 4:2:0 format, most of the infor-
mation is contained in the luma component and the chroma
channels are effectively of low entropy. Besides simplifying
the network structure, this allows the network to learn from
only relevant inputs.

The luminance component of each frame and its refer-
ences (xY ,x̂Y

ref (i)) are used to compute the motion. They
are first concatenated to produce a tensor of size 2× h×w
where h and w denote the height and width of the frames,
respectively. The motion, i.e., the horizontal and vertical
components of the displacement of each sample, is then
computed, which then also corresponds to a 2×h×w tensor.
Optionally, a component can be added, called scale field [1]
which aims at introducing blur when flow-based prediction
is not good enough, e.g., when occlusions occur or objects
move out of bounds. This motion tensor is encoded using a
convolutional autoencoder with an entropy bottleneck. The
output of this stage consists of a tensor containing the mo-
tion vector components and an optional field scale. We use
the tanh activation function to predict values in the [−1, 1]
range, relative to the frame size.

The reconstructed reference frame is warped with these
tensors to produce the predicted image xY UV

pred . During the
warping, the range [−1, 1] of the motion corresponds to mo-
tion vectors with the ranges [−width, width], respectively
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Figure 2. Coding structure for inter coded frames. The luminance
component of the current frame as well as the reference pictures is
used to derive the compressed motion information. At the decoder
end, a strided convolution downsamples the motion flow to the
resolution of chrominance before warping

[−height, height] for the horizontal, respectively vertical,
component of each sample’s displacement. The residual
rY UV is obtained by subtracting the predicted values from
the current source image at the encoder.

rY UV = xY UV − xY UV
pred (1)

Similar to the image and motion information, the resid-
ual is encoded using an autoencoder architecture. This pro-
cess is also lossy, which means that the reconstructed resid-
ual r̂Y UV is not equal to the previously constructed residual
rY UV . For each inter-predicted image, the bitstream thus
contains two parts: one for the motion information and one
for the residuals of the prediction.

The reconstructed frame finally corresponds to:

x̂Y UV = xY UV
pred + rY UV (2)

In the case of YUV 4:2:0 format, the size of U and V
component is generally width/2 and height/2. The abso-
lute displacements of each chrominance sample then cor-
responds to half of those of the Y component. A down-
sampling operation is necessary to derive motion informa-
tion at the correct spatial size for the chrominance, as shown
in Figure 2. This down sampling operation consists of a
3×3 convolution with a stride of 2. The weights are learned
during training, which helps catching the phase between the
luminance and chrominance displacements.

Figure 3. Prediction inter-dependencies in a sequence of two hier-
archical GOP of 8 frames.

2.3. Bi-directional prediction and hierarchical
GOPs

The Random Access configuration is an efficient tempo-
ral prediction structure relying on repeating Groups of Pic-
tures (GOPs), which consist of the minimal temporal time
frame structure. Specific instant random access points, con-
sisting of a purely Intra coded frames, enable the decoder
to start the decoding since no temporal context is required
to initialize the parsing. Figure 3 illustrates such a struc-
ture in the case of a GOP of 8 frames. The first frame is
an Intra frame, or I-frame, meaning that it does not depend
on other frames to be decoded. It can then be used as a
random-access point, where a decoder can start decoding a
sequence. In broadcast, they are typically separated by a
second of video, which enables TV viewers to switch chan-
nels and start decoding the new channel they selected, and
not wait for too long for the video to start being displayed.
However, these frames usually cost a lot of bits to trans-
mit since they are not predicted using previously decoded
content. Between I-frames, the remaining frames are pre-
dicted using the previously decoded frames. In the structure
of Figure 3, one can notice that the coding order is differ-
ent from the order of display. This enables the encoder to
predict the frames using past and future previously recon-
structed pictures, allowing to bypass occlusions and appear-
ing/disappearing objects. These frames are hence called B
frames for bi-directional prediction.

The structure follows a hierarchical pattern with frames
of type B0, B1, B2, and B3. The B0 of each GOP is the first
frame to be coded, it is predicted using the last key frame (I
or B0) from previous GOPs, e.g., frame 8 in display order
is predicted from frame 0. The following frames in coding
order can be predicted using past and future frames, as de-
picted by the arrows. Frames B1 can use frames of type I ,
B0, frames B2 can be predicted from frames I, B0 and B1

etc. The distance between the current frame and the refer-
ence frame then varies depending on the decisions made by
the encoder. We use conditional activation to condition the
motion and residual encoders/decoders to the level of the
current B frame. This allows the network to learn more ef-
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Figure 4. Convolutions / transpose convolutions with conditional
activation in the autoencoders for residual and motion information.

ficient representations, as the lower hierarchical levels are
usually subject to larger motions, while the quality of the
reference frames decreases with the GOP depth. We use a
one-hot encoding of the 4 possible frame levels (B0 to B3),
we also experimented with directly encoding the frame po-
sitions in the GOP (1 to 8) but it did not performed as well.
Figure 4 shows such conditional convolutions, where “FC”
stands for Fully Connected and exp is the exponential acti-
vation function.

3. Experimental setup
Architecture The network is implemented in PyTorch
with the help of the CompressAI library [4]. The main
buildings blocks are hyperprior networks from [2] for the
keyframe, inter and motion autoencoders. We use ReLU
activations instead of GDN, replace each convolutions by
two consecutive residual blocks. Uniform quantization and
rounding are mixed to relax the non-differentiable quanti-
zation operations during training [11]. The entropy coding
is performed using an ANS (asymmetric numeral systems)
coder, a faster variant of arithmetic coding [7].

Training For the training data, we randomly extracted
and cropped consecutive frames from the CLIC2021
dataset. We used approximately 200k samples. Frames
are grouped in temporal chunks of gop size elements. To
accelerate the training we don’t propagate the gradients of
the reference frames used for inter prediction (detach in Py-
Torch, stop gradients in Tensorflow).

We trained for 150 epochs using the Adam optimizer
with a starting learning rate of 1e−4, a batch size of 8
and cropped frames of size 256×256 pixels. We decay the
learning rate by 0.1 whenever the loss reaches a plateau.
The network is first optimized for MSE to improve conver-
gence and stability, we then switch to the MS-SSIM metric
at 80% of the total training steps, and also increase the patch
size to reduce border artifacts. Training is performed on a
single RTX 8000 GPU.

Quantized scale transform To ensure a correct decoding
of the latents across devices and platforms, some floating

point operations need to be replaced with integer arithmetic.
More specifically, the decoded scales from the hyperprior
transforms need to be deterministic for the latents to be de-
coded properly by the entropy coder. To do so, we first train
the network in floating point and then perform post-training
quantization (sometimes also called static quantization) and
calibration of the scale transforms. No performance impact
on the actual bitstream was measured after quantization.

4. Results
Test conditions The proposed framework has been eval-
uated in the conditions of the video compression challenge
for CLIC 2021 (Challenge on Learned Image Compression)
CVPR workshop. The participants are provided with a large
training set of hundreds of videos from which a test set of
100 clips of 2 seconds at 30Hz is selected. This corresponds
to 60 frames per clip. Sequence resolutions vary between
1440× 720, 1280× 720, 960× 720 and 959× 720. The se-
quences are in the YUV 4:2:0 color format, i.e the chromi-
nance component (U and V) are 2 times smaller in both ver-
tical and horizontal dimension than the luminance channel
(Y).

The leader-board of the challenge ranks the responses
using the MS-SSIM metric [13] measure on the decoded
sequences. Only one operational bit-rate point of approxi-
mately 1Mb/s is considered. The total size of the submis-
sion, i.e. the sum of all the encoded sequence binaries and
the decoder executable, is limited as follows:

Sbitstreams + 0.019 ∗ Sdecoder < 1, 309, 062, 500 (3)

This penalizes the decoder model size and prevents pro-
posals from overfitting on the whole training set from which
the test set is extracted. The proposed decoder is approxi-
mately 44MB, which leaves around 24MB to encode the
100 sequences, or approximately 0.0342 bpp.

Objective results Objectively, our network achieves MS-
SSIM/PSNR as 0.9520/29.77dB on the validation set. The
total size of the decoder in 44MB, and 720p frames are de-
coded in 0.2s on average (non-optimized code running on
GPU).

5. Conclusion
In this paper, we presented a end-to-end video compres-

sion framework which leverages efficient hierarchical tem-
poral structure for interframe predictions. Our model is
able to directly encode YUV 4:2:0 frames, rely on motion
and residual estimators learned from scratch, and condi-
tional convolutions to handle the disparity of motions be-
tween GOP levels. The results show the promises of an
end-to-end bidirectional approaches for ANN-based video
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compression. Several future directions can be considered:
generalizing the model to more complex motion modeling,
better handling of screen-content videos, scene cuts, and
generalizing to a more flexible inter prediction structure.
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