
MCM: Multi-channel Context Model for Entropy in Generative Image
Compression

Yeda Chen, Qingzhu Yuan, Ziwen Zhang, Yi Feng, XiangJi Wu
AttrSense Inc

wuxiangji@attrsense.com

Abstract

In this paper, we present an extended end-to-end im-
age compression network for CLIC2021 image compres-
sion track. Perception loss and GAN loss are taken into
account for better human perception of image quality, a
simple attention module is deployed to enhance the net-
work to capture structures and edges of objects in images
which human may pay more attention to. Besides, in order
to fully utilize the decoded information, we split features
into multiple splits and recursively decode features. Also,
we recognize that the image compression tasks have to have
some rigor. Pure perceptually optimized model might in-
troduces eye pleasing but yet fake details, this issue could
be enlarged for low rate compression tasks. Therefore, our
model is optimized both perceptually and objectively. Thus,
the model is able to generate much more visually pleasing
reconstructions compared to traditional compression meth-
ods, while maintaining the authenticity of small details. We
demonstrate our methods with human-judged experiments.

1. Introduction

Recently, subjective evaluation methods of image com-
pression has derived great interests, many perception critics
are proposed [5, 1, 4, 2, 7]. Compared with traditional im-
age quality evaluation critics, well designed perception loss
can analyze the inner feature of images generated by net-
work, which is more precious to assess structural informa-
tion. As to GAN loss, this is an excellent method to super-
vise the reconstruction to follow the distribution of original
images, resulting in more realistic visual effects compared
to traditional evaluation critics [2, 7].

Instead of considering each pixel equally, human eyes
are usually more sensitive to image color contrast and struc-
ture information. To address this problem, Kim et al. [8]
and Woo et al. [12] developed channel/spatial attention
module for feature selection and calibration during image

reconstruction process.
One more thing to consider: The practical significance

of pure perceptual evaluation. How we value the impor-
tance of different metrics in terms of the original intention
of the image compression task. The human evaluation
process described by the task is Full-Reference Image
Quality Assessment, this might introduce one potential
issue, i.e. different individual has different region of
interest. Thus the difference of texture pattern, brightness,
saturation, hue, sharpness, contrast, and the general image
content stability between the reconstruction and the original
image, and other perceptual evaluation methods such as
MS-SSIM, FID, LPIPS, NIQE, MMD, PIM, DISTS, etc.
According to our human evaluation experiments, we can
hardly define a unified evaluation equation to meet different
individual’s tastes, details will be given in Section 4.
In addition, [3] proposed a reasonable explanation that
perceptual-distortion tradeoff is an inevitable matter of
fact. Thus we decide to design our model to cover as much
aspects as possible, yet remaining our core value, following
the original data and reduce the fake content generation
effects.

2. Method
2.1. Overview of the Proposed Model

Our variable rate image compression framework, which
is illustrated in Figure 1, has three main parts: encoder, de-
coder and entropy prediction module. The encoder module
consists of space2depth, residual block, attention module
and gain unit [6], while the decoder module consists of
inversed gain unit [6], stacked residual block, residual
block, attention module and depth2space. For encoder
and decoder, we adapt GDN and iGDN as activations
respectively.

Our stack residual block consists of five normal residual
blocks with 3*3 kernel. Note that the inputs of the stack
residual block are concatenation of decoded feature and
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Figure 1. Overview of the proposed architecture.

side information from the hyper part. This stack residual
block has the benefit of generating better textures, since
wider convolution kernels can help reconstruct more details
of images [11].

2.2. Attention module

The proposed attention module, shown in Figure 3, is
implemented after each downsampling and before each
upsampling. During the practice of attention modules
tuning, we realize that heavy attention modules would
incur network hard to train, especially for generative
adversarial training process. Two convolutions are replaced
by space2depth and depth2space layers respectively to
alleviate unstable training situation of too deep networks.

2.3. Entropy prediction module

The entropy prediction module is inspired by channel
split [10] and multi-scale mask convolutions [6]. In our pro-
posed framework, quantized feature y is split into 8 parts,
and for each part, we do multi-scale mask convolutions to
traverse each pixel. Each split part will utilize the decoded
feature slice as prior knowledge to predict mu and sigma of
current feature, except the first split part, as shown in red
dash line in Figure 2.

Figure 2. Illustration of the entropy prediction model

Figure 3. Illustration of attention module



image name model Bpp PSNR MSSSIM LPIPS Pim DISTS

felix-russell-saw-140699.png hific 0.177 33.01 0.9665 0.0447 9.998 0.0533
anf 0.170 34.74 0.9700 0.0600 9.843 0.0556

todd-quackenbush-27493.png hific 0.142 34.91 0.9868 0.0211 6.623 0.0394
anf 0.139 36.38 0.9884 0.0261 6.817 0.0498

Table 1. Metrics tested on two images sampled from CLIC valid.

2.4. Loss

We optimized the model in a two-step-training fashion:
Step1. In the first step, the following loss function was

trained for 1,000,000 steps.

L =λ · (Dmse + α ·DLPIPS

+β ·Dmsssim) +R,
(1)

Dmse represents mean squared error loss, DLPIPS rep-
resents perceptual loss [9], Dmsssim represents multi-scale
SSIM loss, R represents the total rate loss, while λ is fac-
tor to balance the quality of reconstruction and total bits.
α, among 0.01∼0.006, is a factor to control LPIPS loss
and β, among 0.0∼0.02, controls multi-scale MS-SSIM
loss. From our experience, loss only with LPIPS can re-
construct bright-coloured images better, but not the small
region structural accuracy. Therefore, using β to mix some
part of multi-scale SSIM has benefits to recover the struc-
ture of details, especially for high-rate compression situa-
tions.

Step2. For the second step, the following loss function
was used. Dgan represents generative adversarial loss. Base
on the pretrained model generated in step 1, we add gener-
ative adversarial loss to train the model again.

L =λ · (Dmse + α ·DLPIPS

+β ·Dmsssim + 0.001 ·Dgan) +R,
(2)

3. Experimental setup

Training data Our model is first trained on a union
of different data sets, including OpenImage, CLIC 2020,
COCO 2014, COCO 2017, and YFCC 100m. We also
download 121226 high resolution images (averaged in
4k*4k) from Unsplash with highest quality. The experi-
ments show that the model trained on Unsplash can provide
the best visual results without bending the details too much.

4. Results

Qualitative results In Figure 4, we compare two im-
ages sampled from CLIC Valid set between hific [9] and
our model names anf on Table 1. We can conclude that anf
has more authentic textures of reconstructed images.

Figure 4. comparison between hific[9] and our model tested on
felix-russell-saw-140699.png

Figure 5. comparison between hific [9] and our model tested on
todd-quackenbush-27493.png

Quantitative results on CLIC2021 valid set We eval-
uate our proposed model on all 41 CLIC 2021 valid im-
ages. For PSNR and MS-SSIM our model has higher score
than hific [9], while hific performs slightly better on LPIPS
as in Figure 6. We also carry out a human evaluation pro-
cess where 20 guests are invited to do a blind selection be-
tween hific and our reconstructions. For a total 840 votes,
our model has 570 votes, hific has 202 votes, and 48 votes
are discarded. figure 4 and figure 5 show different recon-
struction details of hific and our model. Although hific has
lower lpips score, our model still generates better details
compared to the hific.



Figure 6. PSNR, MSSSIM, LPIPS comparison between hific [9] and our model

5. Conclusion
In this paper, we propose a novel image compression

model for human perceptual evaluation. Multi-channel con-
text model is adopted to capture both channel and spatial
prior information. Attention mechanism and space2depth
modules are applied to balance more semantic information
and less calculation. Besides, we design an effective loss
function to prevent eye pleasing but yet fake details, through
manual evaluation, such real features are more convincing.
As shown in the results of the validation set, our model
”anf” yeilds outstanding performance in both objective and
perception metric.
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