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Abstract

Convolutional autoencoders are now at the forefront of

image compression research. To improve their entropy cod-

ing, encoder output is typically analyzed with a second

autoencoder to generate per-variable parametrized prior

probability distributions. We instead propose a compression

scheme that uses a single convolutional autoencoder and

multiple learned prior distributions working as a competition

of experts. Trained prior distributions are stored in a static

table of cumulative distribution functions. During inference,

this table is used by an entropy coder as a look-up-table

to determine the best prior for each spatial location. Our

method offers rate-distortion performance comparable to

that obtained with a predicted parametrized prior with only

a fraction of its entropy coding and decoding complexity.

1. Introduction

Image compression typically consists of a transforma-

tion step (including quantization) and an entropy coding

step that attempts to capture the probability distribution of

a transformed context to generate a smaller compressed bit-

stream. Entropy coding ranges in complexity from simple

non-adaptive encoders [26, 24] to complex arithmetic coders

with adaptive context models [15, 23]. The entropy cod-

ing strategy has been revised to address the specificities of

learned compression. More specifically, for recent works

that make use of a convolutional autoencoder [12] (AE) as

the all-inclusive transformation and quantization step, the en-

tropy coder relies on a cumulative probability model (CPM)

trained alongside the AE [5]. This model estimates the cumu-

lative distribution function (CDF) of each channel coming

out of the AE and passes these learned CDFs to an entropy

coder such as range encoding [16].

Such a simple method outperforms traditional codecs

like JPEG2000 but work is still needed to surpass complex

codecs like BPG. Johannes Ballé et al. (2018) [6] proposed

analyzing the output of the convolutional encoder with an-

other AE to generate a floating-point scale parameter that

differs for every variable that needs to be encoded by the

entropy coder, thus for every location in every channel. This

method has been widely used in subsequent works but in-

troduces substantial complexity in the entropy coding step

because a different CDF is needed to encode every variable

in the latent representation of the image, whereas the single

AE method by Ballé et al. (2017) [5] reused the same CDF

table for every latent spatial location.

Our work uses the principle of competition of experts

[22, 14] to get the best out of both worlds. Multiple prior

distributions compete for the lowest bit cost on every spatial

location in the quantized latent representation. During train-

ing, only the best prior distribution is updated in each spatial

location, further improving the prior distributions special-

ization. CDF tables are fixed at the end of training. Hence,

at testing, the CDF table resulting in the lowest bitcost is

assigned to each spatial location of the latent representation.

The rate-distortion (RD) performance obtained is compa-

rable to that obtained with a parametrized distribution [6],

yet the entropy coding process is greatly simplified since it

does not require a per-variable CDF and can build on look-

up-tables (LUT) rather than the computation of analytical

distributions.

2. Background

Entropy coders such as range encoding [16] require cdfs

where, for each variable to be encoded, the probability that a

smaller or equal value appears is defined for every allowable

value in the latent representation space. Johannes Ballé et

al.’s seminal work (2017) [5] consists of an AE, computing a

latent image representation consisting in CL channels of size

HL ×WL, and a CPM, consisting of one CDF per latent out-

put channel, which are trained conjointly. The latent repre-

sentation coming out of the encoder is quantized then passed

through the CPM. The CPM defines, in a parametrized and

differentiable manner, a CDF per channel. At the end of

training, the CPM is evaluated at every possible value1 to

generate the static CDF table. The CDF table is not differen-

tiable, but going from a differentiable CPM to a static CDF

table speeds up the encoding and decoding process. The
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CDF table is used to compress latent representations with an

entropy coder, the approximate bit cost of a symbol is the

binary logarithm of its probability.

Ballé et al. (2018) improved the RD efficiency by re-

placing the unique CDF table with a Gaussian distribution

parametrized with a hyperprior (HP) sub-network [6]. The

HP generates a scale parameter, and in turn a different CDF,

for every variable to be encoded. Thus, complexity is added

by exploiting the parametrized Gaussian prior during the

entropy coding process, since a different CDF is required for

each variable in the channel and spatial dimensions.

Minnen et al. proposed a scheme where one of multi-

ple probability distributions is chosen to adapt the entropy

model locally [21]. However, these distributions are defined

a posteriori, given the encoder trained with a global entropy

model. Thus [21] does not perform as well as the HP scheme

[6] per [19, Fig. 2a]. In contrast, the present method jointly

optimizes the local entropy models and the AE in an end-to-

end fashion that results in greater performance. Minnen et al.

[19] later proposed to improve RD with the use of an autore-

gressive sequential context model. However, as highlighted

in [13], this is obtained at the cost of increased runtime

by several orders of magnitude. Subsequent works have

attempted to reduce complexity of the neural network archi-

tecture [10] and to bridge the RD gap with Minnen’s work

[13], but entropy coding complexity has remained largely

unaddressed and has instead evolved towards increased com-

plexity [19, 7, 20] compared to [6]. The present work builds

on Ballé et al. (2017) [5] and achieves the performance of

Ballé et al. (2018) [6] without the complexity introduced

by a per-variable parametrized probability distribution. We

chose Ballé et al. (2017) as a baseline because it corresponds

to the basic unit adopted as a common reference and starting

point for most models proposed in the recent literature to im-

prove compression quality [6, 19, 13, 20]. Due to its generic

nature, our contribution remains relevant for the newer, often

computationally more complex, incremental improvements

on Ballé et al. (2017).

3. Competition of prior distributions

Our proposed method introduces competitions of expert

[22, 14] prior distributions: a single AE transforms the image

and a set of prior distributions are trained to model the CDF

of the latent representation in each spatial location. For each

latent spatial dimension the CDF table which minimizes bit

cost is selected; that prior is either further optimized on the

features it won in the training mode, or its index is stored for

decoding in the inference mode. This scheme is illustrated

in Figure 1, and three sample images are segmented by

“winning” CDF table in Figure 2.

All prior distributions are estimated in parallel by consid-

ering NCDF CDF tables, and selecting, as a function of the

encoded latent spatial location, the one that minimizes the
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Figure 1. AE compression scheme with competition of prior distri-

butions. The AE architecture is detailed in [6, Fig. 4]. The indices

i denote the indices of CDF tables that minimizes the bitcount for

each latent spatial dimension. Loss = Distortion + λ bitCost.

Figure 2. Segmentation of three test images [1]: each distinct color

represents one of 64 CDF tables used to encode a latent spatial

location (16× 16 pixels patch)

entropy coder bitcount. The CDF table index is determined

for each spatial location by evaluating each CDF table in

inference. This can be done in a vectorized operation given

sufficient memory. During training the CPM is evaluated

instead of CDF tables such that the probabilities are up to

date and the model is differentiable, and the bit cost is re-

turned as it contributes to the loss function. The cost of CDF

table indices has been shown to be neglectable due to the

reasonably small number of priors, which in turns results

from the fact that little gain in latent code entropy has been

obtained by increasing the number of priors.

In all our experiments , the AE architecture follows the

one in Ballé et al. (2018) [6], without the HP, since we found

that the AE from [6] offers better RD than the one described

in Ballé et al. (2017) [5], even with a single CDF table. A

functional training loop is described in Algorithm 1.



Algorithm 1 Training loop

y← model.Encoder(x)

ŷ← quantize(y)

x̂← clip(model.Decoder(ŷ), 0, 1)

distortion← visualLossFunction(x̂, x)

for 0 ≤ k < HL and 0 ≤ l < WL do

bitCost [k, l]← mini<NCDF
∣

∣− log
2

(

CPMi(ŷ[k, l] + 0.5)− CPMi(ŷ[k, l]− 0.5)
)
∣

∣

end for ⊲ CPM is the differentiable version of CDF

Loss← distortion× λ+ |bitCost|
Loss.backward()

4. Experiments

4.1. Method

These experiments are based on the PyTorch implemen-

tation of Ballé et al. (2018) [6] published by Liu Jia-

heng [9, 13]. To implement our proposed method, the

HP is omitted in favor of competition of expert prior dis-

tributions. The CPM is that defined in [9] with an addi-

tional NCDF dimension to compute all CDF tables in par-

allel. Theoretical results are verified using the torchac

range coder [18, 17, 16]. A functional training loop is de-

scribed in Algorithm 1, and source code is provided on

https://github.com/trougnouf/Manypriors.

To ensure that all priors get an opportunity to train, the prior

distributions that have not been used for at least fifty steps

are randomly assigned to spatial locations with largest bit-

counts, to be forced to train. The Adam optimizer [11] is

used with a starting learning rate (LR) of 0.0001 for the AE

and 0.001 for the CPM. Performance is tested every 2500

steps in inference mode on the validation set, and the LR

is decayed by a factor of 0.99 if the performance have not

improved for two tests. Reported performance is the one of

the model taht minimizes (visualLoss× λ+ bitCost) on the

validation set at the end of training. Base models are trained

for six million steps at λ = 4096 with the mean squared er-

ror (MSE) loss. Smaller λ values and MS-SSIM models are

trained for four million steps starting from the base model

with their LR and optimizer reset. All models use CH = 192
(hidden layers channels) and CL = 256 (output channels)

such that a single base model is needed for each prior con-

figuration. The training and validation dataset is made of

free-license images from Wikimedia Commons [3]; mainly

“Category:Featured pictures on Wikimedia Common” which

consists of 13928 images of the highest quality. The images

are cropped into 10242 pixels patches on disk to speed up

further resizing, then they are resized on-the-fly by a random

factor down to 2562 pixels during training. A batch size of 4

patches is used. The kodak set [2] is used as a validation set

and the CLIC professional test dataset [4] is used for testing.

The RD curve of our “multiprior” model is compared

with that of the HP model [6], which is trained from scratch
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Figure 3. Top: PSNR RD curve of a 64-priors model on the CLIC

pro. test set, compared with the HP model [6], and the BPG and

JPEG codecs. Middle : Zoom in on models with 1, 2, 4, 8, 16, 32,

and 64 priors. Bottom: MS-SSIM RD curve.

using Liu Jiaheng’s PyTorch implementation [9, 13]. Liu

Jiaheng’s code differs slightly from the paper’s definition [6]

in that a Laplace distribution is used in place of the normal

distribution to stabilize training. Complexity is measured as

the number of GMac (billion multiply-accumulate operation)

using the ptflops counter [25] and the number of memory

lookup operations is calculated manually.

4.2. Results

The PSNR RD curve measured on the CLIC professional

test set [4] is shown on top of Figure 3. The performance

of a 64-priors model is in line with that of the HP model

: they both perform slightly better than BPG at high bpp,

and achieve significantly better RD than the single-prior

model. In the middle, the RD value at λ = 4096, the highest

bitrate, is shown for 1, 2, 4, 8, 16, 32, 64, and 128 prior

distributions. 128-priors offer marginal gains and costs an

increased training time (1.5) and encoding time. MS-SSIM

performance of fine-tuned models is shown in the bottom of

Figure 3; the 64-priors model still performs similarly to [6],



and both learned compression models benefit from this more

perceptual metric compared with traditional codecs.

Computational complexity of our Manypriors has been

compared to the one of the HP model [6]). This complex-

ity is expressed in GMac for the neural network parts and

number of memory lookup operations. The lack of a HP AE

saves 3 % to 6 % GMac, depending on whether only the HP

decoder (image decoding) or the whole HP codec (image

encoding) is used. Decoding with the Manypriors scheme is

greatly simplified compared to [6] because the CDF tables

generation process takes the optimal indices stored as side-

information and looks up one static CDF table per latent

spatial dimension, that is CL (typically 256) fewer lookups

than with a HP. During encoding, the Manypriors scheme

must lookup every latent variable with every CDF table in

order to determine the most cost effective CDF tables. This

results in NCDF (typically 64) times more lookup operations

than the HP scheme overall, although these lookup opera-

tions are relatively cheap because only two values are needed

(variable±0.5), whereas each CDF table lookup in [6] re-

turns L probabilities. Moreover, it is challenging to make

an accurate CDF LUT for the HP scheme, because quantiz-

ing the distribution scale parameter reduces the accuracy of

the resulting CDFs, negatively impacting the bitrate. This

challenge is exacerbated when the distribution has multiple

parameters [19] or a mixture of distributions [7] is used. In

Figure 3, LUT are replaced by accurate but complex Laplace

distribution computation for the HP scheme in order to max-

imize the reported RD performance.

Time complexity is measured for every step on CPU,

where it can be reliably profiled due to synchroneous execu-

tion. It is summarized in Table 1 with the following distinct

sub-categories: NN (neural network) is the time spent in

the AE, CDF generation is the time spent building the CDF

tables for a specific image, and entropy is the bitstream gener-

ation. All operations are done using the PyTorch framework

in python, except for entropy encoding which makes use of

the torchac range coding library [18, 17], written in C++, and

the prior indices are compressed using the LZMA library [8].

The total encoding time of the 64-priors model is 0.32 time

that of the HP model and the decoding time is 0.42 times that

of the HP model. The timing is more significant when it is

broken down by sub-category because each component has

a different response time depending on the hardware (and

software) architecture in place. The AE (“NN”) encoding

time is 0.90 that of the HP scheme and decoding time is

0.95 time as much as the HP. Both the hyper-encoder and

hyper-decoder are called during encoding, thus it appears

that each part of the HP sub-network costs 5 % of the AE

time. The time taken to build the CDF tables for the HP

model was measured both by estimating the per-variable

Laplace distributions (“full-precision”) and with a quantized

scale parameter LUT. In any case, finding the best indices of

Table 1. Breaking down the image encoding and decoding time, in

seconds. Image: 4.5 MP snail [1]. CPU: AMD Ryzen 7 2700X.

Time avg. of 50 runs.

(↓)
Hyperprior

(Ballé2018)

64-priors

(ours)

ratio

(ours÷HP)

Encoding

NN encode: main + hyperprior 3.81 + 0.41 3.79 + 0.00 0.90

entropy encode, main + hyperprior 0.15 + 0.02 0.15 + 0.00

CDF: select indices + gather tables 0.00 +
FP: 15.95

LUT: 5.66
1.90 + 0.81

FP: 0.17

LUT: 0.48

encode (total)
FP: 20.33

LUT: 10.04
6.65

FP: 0.32

LUT: 0.66

Decoding

NN decode : main + hyperprior 10.66 + 0.34 10.50 0.95

CDF : gather tables
FP: 15.95

LUT: 5.66
0.81

FP: 0.05

LUT: 0.14

entropy decode : main + hyperprior 0.24 + 0.02 0.24 0.92

decode (total)
FP: 27.21

LUT: 16.92
11.54

FP: 0.42

LUT: 0.68

a 64-priors model appears to be relatively inexpensive and

the total CDF tables generation time is only 0.17 to 0.48 that

of the HP model (depending on whether the HP model uses

full-precision or LUT) for encoding. During decoding, the

64-priors model spends 0.05 to 0.14 as much time building

the CDF tables as the HP model, because the optimal CDF

table indices have already been determined during encoding

and they are included in the bitstream.

5. Conclusion

Convolutional autoencoders trained for compression are

optimized for both rate and distortion. Rate is estimated with

a cumulative probability model, which in turns generates a

CDF for every latent variable to be encoded. A single CDF

per latent channel is not sufficient to capture the statistics at

the output of the encoder, nor to allow the encoder to express

a wide variety of features. To support multiple statistics, the

hyperprior [6] parametrizes a standard distribution, but this

introduces a great deal of complexity in the entropy coding

stage because the CDF differs for every latent variable to be

encoded. The proposed method uses multiple prior distri-

butions working as a competition of experts to capture the

relevant features which they specialize on. This approach is

advantageous because the learned CDF tables are stored in

a static LUT once training is finished, and a model trained

with 64 prior distributions performs with a similar RD as

one trained with a HP sub-network. Moreover, a learned

CDF table includes the CDF for all channels in the latent

code. Hence, accessing the CDF table for a spatial location

provides the CDF for each of its channels and the number of

lookups is reduced to the number of latent spatial locations.

In our experiments, CDF tables generation in the encoding

step takes 0.17 to 0.48 as much time with a 64-priors model

as it does with the HP model (depending on the precision

of the HP model). This ratio is lowered to 0.05 to 0.14 dur-

ing decoding because the prior indices have already been

determined during the encoding.

6. Acknowledgements

This research is funded by the Walloon Region. Compu-

tational resources were provided by CISM/UCL and CÉCI,
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