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Abstract

In this work, we provide a detailed description on

our submitted methods ANTxNN and ANTxNN SSIM to

Workshop and Challenge on Learned Image Compression

(CLIC) 2021. We propose to incorporate Relativistic aver-

age Least Squares GANs (RaLSGANs) into Rate-Distortion

Optimization for end-to-end training, to achieve perceptual

image compression. We also compare two types of discrim-

inator networks and visualize their reconstructed images.

Experimental results have validated our method optimized

by RaLSGANs can achieve higher subjective quality com-

pared to PSNR, MS-SSIM or LPIPS-optimized models.

1. Introduction

Image compression is a fundamental topic in the field

of image processing for many decades owing to its signifi-

cant effect to transmission and storage. Many representative

compression standards have been widely used in industries,

such as JPEG [1], JPEG2000 [2], High Efficiency Video

Coding (HEVC/265) [3] and latest Versatile Video Cod-

ing (VVC/266) [4]. These standards have achieved impres-

sive coding efficiency with more and more complex hand-

engineered coding tools. Although the computational com-

plexity is significantly increasing, further improvement on

coding efficiency becomes more and more difficult relative

to its predecessor.

Recent learned image compression has made tremen-

dous progress and has achieved impressive coding effi-

ciency regarding well-kown PSNR and MS-SSIM quality

metrics in [5, 6, 7, 8, 9, 10] etc. One main advantage

of learned image compression is that it is flexible to be

adapted to any quality metrics as long as this quality met-

ric is differentiable. Different quality metrics leads to dif-

ferent reconstruction artifacts. Some of artifacts are easily

captured by human visual system such as blurring, while

some of them are not. For instance, LPIPS [11] is a neural-

network based quality metric, which is found to correlate

much better with human evaluations in CLIC 2020 low-

rate image compression track [12] compared with PSNR

and MS-SSIM. Generative adversarial models also exhibit

a superior performance in terms on image subjective qual-

ity. However, GANs sometimes lead to the unstable training

process in rate-distortion optimization problem. In [13] and

[14], authors either used a frozen learned encoder or a fixing

VVC encoder and only learned the decoder using VGG-19

and ESRGAN losses. In [15], selective detail decoding was

realized by an additional selective decoder and stable train-

ing could be achieved by using a softplus-based discrimina-

tor loss function. In [16], authors present very competitive

perceptual qualities, and found MSE is likely to be the driv-

ing force for stability, and jointly learning encoder without

MSE led to a collapse of GAN training. However, there is

a large room to explore the discrminator architectures and

GAN training strategies.

This work presents a detailed description on our submit-

ted methods ANTxNN and ANTxNN SSIM to Workshop and

Challenge on Learned Image Compression (CLIC) 2021.

The network architecture combines recent techniques, in-

cluding split attention and Gaussian mixture models. To

achieve a higher perceptual quality, we apply Relativistic

Average Leaset Squares GANs to achieve a stable rate-

distortion. We also incorporate LPIPS, a learned quality

metric as one of distortion metrics. Experimental results

demonstrate our models can achieve higher subjective qual-

ity than optimizing LPIPS, or MSE or MS-SSIM only.

2. Related Work

Learned Image Compression Related studies have val-

idated image compression can be formulated as a rate-

distortion optimzation problem and then solved benefit-

ting recent deep learning techniques in [5, 6, 7, 8, 9, 10].

Some other works explored the approximations of non-

differentiable quantization, such as uniform noise [17],

straight-through proxy [18], soft quantization [19], uni-

versal quantization [20], for the better gradient back-

propagation. Some works proposed different network struc-
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Figure 1: The network structure we used, by referring to [8] as a baseline model. Orange color highlights the discriminator,

to tell the difference between raw images and compressed images, and it also takes the compressed codes as the conditional

information, similar to the design of conditional GANs (CGANs). The backbone is basically same as [8], except the split

attention block filled up by green proposed in [32]. Besides, blue denotes the convolution with the stride of 2 to downscale

or upscale feature maps and other convolutions are inserted to maintain large model capacity.

tures, including recurrent neural networks [22], content-

weighted map [23] or principle component analysis-based

channels de-correlating [24], or energy compaction reg-

ularizer [25], deep residual blocks [26], octave convolu-

tion [27], channel-level variable quantization network [28].

Variable-rate compression was studied in [29] using a layer-

wise scaling based on conditional convolutions.

Perceptual Image Compression To further remove the re-

dundancy from the viewpoint of human perceived quality,

many approaches are seeking for solutions from generative

adversarial networks to preserve the distributions of raw im-

ages, such as some pioneer works [30, 21]. However, rate-

distortion-perception tradeoff is mathematically discussed

in [31] to show adding perceptual quality constraint leads to

a sacrifice of either rate or distortion. It has been validated

by the results of [13, 14, 15] in the leaderboard of CLIC

2020 low-rate compression track, and subjective quality op-

timization usually leads to the decreasing of objective qual-

ity metrics, such as PSNR or MS-SSIM with a fixed rate

constraint.

3. Proposed Method

3.1. Problem Formulation and Network

Learned image compression is formulated as a La-

grangian multiplier-based rate-distortion optimization prob-

lem. This problem can be solved by minimizing its loss

function:

L =λ×D(x, x̂) +R(ŷ) +R(ẑ)
(1)

where λ controls the rate-distortion trade-off. Different λ
values are corresponding to different bit rates. R(ŷ) and

R(ẑ) are rate terms, calculated by E[− log2(pŷ|ẑ(ŷ|ẑ))]
and E[− log2(pẑ|ψ(ẑ|ψ))]. The probabilities are further

calculated by

pŷ|ẑ(ŷ|ẑ) =
∏

i

(

K∑

k=1

w
(k)
i N (µ

(k)
i , σ

2(k)
i ) ∗ U(−

1

2
,
1

2
))(ŷi)

(2)

pẑ|µz,σz
(ẑ|µz,σz) =

∏

j∈N

(N (µzj , σzj ) ∗ U(−
1

2
,
1

2
))(ẑj)

(3)

where yi, zi denote the i-th element of y and z. The likeli-

hoods of yi are estimated by predicted w
(k)
i , µ

(k)
i and σ

2(k)
i ,

which are parameter of Gaussian Mixture Models (GMM).

Typical K is 3. The entropy models for ẑ is a channel-

wise single Gaussian model given by a pair of mean µz and

scale σz with the size of [N, 1], where j denotes the in-

dex of channels, N denotes the number of total channels.

D(x, x̂) denotes the distortion term and will be discussed

in next section.

The network architecture we used is shown in Fig. 1. We

follows the latest learned image compression approach with

a hyperprior and autoregressive model, and uses a Gaussian

mixture models (GMMs) with K mixtures [8, 9], which are

reported to have state-of-the-art performance. But, we re-

place the attention module by grouped-separated attention

block in [32] to further enhance the performance. This

block can enable separate groups attention and improve the

PSNR by about 0.1dB at the same bit rate. All the param-

eters in Fig. 1 are end-to-end learned to achieve the best

rate-distortion optimization.
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Table 1: Two different types of discriminators, where all

the layers use leakyReLU with alpha of 0.2 as activation

functions except for the last layer with no activation.

disc4×4 discRB

y ∈ R
12×12×192

Conv 3× 3, stride 1, 12

UpSampling2D (size=(16, 16))

Concat(x, features), x ∈ R
192×192×3

Conv 4× 4, stride 2, 64 RB 3× 3, stride 2, 64

Conv 4× 4, stride 2, 128 RB 3× 3, stride 2, 128

Conv 4× 4, stride 2, 256 RB 3× 3, stride 2, 256

Conv 4× 4, stride 2, 256 RB 3× 3, stride 2, 256

Conv 4× 4, stride 2, 512 RB 3× 3, stride 2, 512

Conv 4× 4, stride 2, 512 RB 3× 3, stride 2, 512

Conv 4× 4, stride 1, 512 RB 3× 3, stride 2, 512

Flatten Flatten

Dense layer, 1024 Dense layer, 1024

Dense layer, 1 Dense layer, 1

3.2. Least Squares Relativistic Generative Adver-
sarial Learning

As Fig. 1, we add a discriminator network to tell the

difference between raw images x and compressed images

y are also fed into the discriminator network as the con-

ditional information, similar to the design of conditional

GANs (CGANs). We tried two designs of discriminators,

as listed in Table 1. Different discriminator structures lead

to different artifacts, which will be visualized in Section 5.

Then we further explore different types of GAN losses,

including standard GAN, HingeGAN, WGAN and LS-

GAN. Experimental results show LSGAN [33] shows the

most stable performance for end-to-end training. So we

use LSGAN. Beside, we use the relative average GAN [34]

by assuming the real samples should be better than average

fake ones, and vice versa. Denote the C(x) and C(x̂) are

the output of discriminator with the input of raw images x
and compressed images x̂. The relative output is computed

as:

C(x) = C(x)− E(C(x̂))

C(x̂) = C(x̂)− E(C(x))
(4)

Then the Rate-distortion loss in Eq. (1) is incorporated

into the generator loss. The final generator losses and discr-

minator losses are listed as

Lg =(E[(C(x̂)− 1)2] + E[(C(x) + 1)2]) ∗ β+

λ×D(x, x̂) +R(ŷ) +R(ẑ)

Ld =E[(C(x)− 1)2] + E[(C(x̂) + 1)2]

(5)

where β defines the weight of generator, and is set as 0.015
in our experiments. The distortion term is a combination of

MSE and LPIPS, as

D(x, x̂) = MSE + kp ∗ LPIPS (6)

where kp controls the weight of LPIPS and kp is set as 103

in our experiments. λ controls the rate and will be given in

Section 4.

4. Implementation Details

Training Details For training, we used a 2K resolution

high-quality DIV2K dataset [35] with 800 images to avoid

over-fitting to JPEG compressed artifacts and distributions.

We cropped them into samples with the size of 192×192×3,

instead of 256×256 to reduce the training time. The number

of channels N in Figure 1 is set as 192.

Our submitted method ANTxNN SSIM is optimized by

only MS-SSIM quality metric [36], i.e. D(x, x̂) = 1 −
MS-SSIM(x, x̂). When optimized by MS-SSIM, λ belongs

to the set {1.5, 2, 6, 18, 24} to get five models. They were

trained using the Adam [37] algorithm with a batch size of

8. The learning rate was kept at a fixed value of 1 × 10−4

for 500k iterations, and was reduced to 1 × 10−5 for the

last 80k iterations. Then the bit allocation is solved as a

knapsack problem to push the total bits to the targeted bpp.

Our submitted method ANTxNN is optimized by a com-

bined distortion metrics, including LPIPS, mean square er-

ror (MSE) and GAN loss. λ belongs to the set {10−3 ∗
(0.45, 0.5, 0.75, 1, 2, 4, 6, 8)} to get eight models. Both dis-

criminator and generator were trained using the Adam [37]

algorithm with a batch size of 8. All the parameters are

firstly initialized by a model trained for 500k iterations by

MSE only. Then, the learning rate was kept at a fixed value

of 1×10−4 for 300k iterations, and was reduced to 1×10−5

for the last 80k iterations. Learning rate decay can train the

models to the convergence.

Textual Region Enhancement Due to the special atten-

tion of human visual system on textual regions, we used a

simple OCR detection algorithm to get the enhanced mask

and merge sub-masks into a whole region of interest (ROI).

Then we crop the ROI from reconstructed images and en-

code the residual image using VVC [39] encoder, as a ROI-

based enhancement.

Quantized rate computation We apply layer-wise fake

quantization after each convolution in a hyper decoder and

autoregressive model with a fixed encoder and decoder.

And, we also apply fake quantization after the softmax op-

erator to the weights of GMM models, although softmax is

not totally fixed-point calculation, as

µ
(k)
i = round(µ

(k)
i /qµ) ∗ qµ

σ
(k)
i = round(σ

(k)
i /qσ) ∗ qσ

w
(k)
i = floor(w

(k)
i /qw) ∗ qw, k = 0, 1

w
(2)
i = 1.0− w

(0)
i − w

(1)
i

(7)
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In our experiments, qµ is set as 0.2, qσ is set as 0.1 and qw
is set as 0.0001. Quantized rate computation leads to less

than 3% rate increment. But, quantized rate computation

can avoid the floating-point calculation errors and improve

the computation stability.

5. Results

In this section, experimental results and ablation studies

are present. First, we have shown the results of our submit-

ted methods on CLIC validation dataset in Table. 2 and Ta-

ble 3. ANTxNN SSIM ranks the 2-nd in terms of MS-SSIM.

ANTxNN ranks the 6-th, 2-nd and 3-rd in terms of FID at

the rate of 0.075bpp, 0.15bpp and 0.30bpp, separately.

Table 2: Results of our submitted methods ANTxNN.

Model PSNR MS-SSIM FID Rate (bpp)

ANTxNN 33.726 0.97748 144.509 0.30

ANTxNN 31.315 0.96098 158.102 0.15

ANTxNN 27.465 0.91785 192.697 0.075

Table 3: Results of our submitted methods ANTxNN SSIM.

Model PSNR MS-SSIM FID Rate (bpp)

ANTxNN SSIM 33.726 0.97748 144.509 0.30

ANTxNN SSIM 31.315 0.96098 158.102 0.15

ANTxNN SSIM 27.465 0.91785 192.697 0.075

0.1 0.2 0.3 0.4 0.5

10−1.5
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Rate (bpp)
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Proposed [MS-SSIM]
HiFiC [16]
Proposed [LPIPS + MSE]
Proposed [LPIPS + MSE + discRB]
Proposed [LPIPS + MSE + disc4×4]

Figure 2: Comparison of R-D curves using LPIPS quality

metric on the Kodak [38] dataset.

Besides, ablation study on rate-LPIPS rate curves is

shown in Fig. 2. We can observe that the models optimized

by MSE or MS-SSIM can not achieve good LPIPS values.

By incorporating LPIPS into the loss function, the percep-

tual quality of reconstructed images can be significantly im-

proved. We also compare our results with recent perceptual-

optimized compression approach [16]1. It can be seen

our method achieves lower LPIPS performance compared

to [16]. Models optimized by LPIPS+MSE achieved the

lowest LPIPS, and adding GAN slightly increases the value

of LPIPS.

1https://hific.github.io

[MSE],  0.032bpp, 33.49dB, 

MS-SSIM=0.934, LPIPS=0.323

[LPIPS+MSE], 0.035bpp, 32.65dB 

MS-SSIM=0.928, LPIPS=0.117

[SSIM], 0.048bpp, 33.37dB, 

MS-SSIM=0.956, LPIPS=0.301

Raw Images

[LPIPS+MSE+disc_RB], 0.039bpp

32.40dB, MS-SSIM=0.924, LPIPS=0.137

[LPIPS+MSE+disc_4x4], 0.038bpp

32.05dB, MS-SSIM=0.919, LPIPS=0.130

Figure 3: Visualization of different artifacts.

Fig. 3 visualize the compressed artifacts by different

methods using the same network, i.e optimizing by MSE,

MS-SSIM, LPIPS+MSE, LPIPS+MSE+GAN. We can ob-

serve adding discriminator can improve the perceptual qual-

ity significantly than optimizing LPIPS, MSE or MS-SSIM

only. Since 4 × 4 discriminator is slightly better than dis-

criminator with residual block, so our submitted method

ANTxNN used 4× 4 discriminator.

6. Conclusion

In this paper, we have described our methods ANTxNN

and ANTxNN SSIM, which are submitted to challenge on

learned image compression (CLIC) 2021. RaLSGANs are

incorporated into rate-distortion optimization stably to im-

prove perceptual quality of reconstructed images than other

GAN losses. We also discuss two types of discriminator

networks. Besides, visualization comparisons have demon-

strated RaLSGANs-optimized compression model can gen-

erate higher subjective quality than optimizing LPIPS,

PSNR, or SSIM only.
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