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Abstract

Image compression is a method to remove spatial
redundancy between adjacent pixels and reconstruct a
high-quality image. In the past few years, deep learn-
ing has gained huge attention from the research com-
munity and produced promising image reconstruction re-
sults. Therefore, recent methods focused on developing
deeper and more complex networks, which significantly
increased network complexity. In this paper, two effec-
tive novel blocks are developed: analysis and synthe-
sis block that employs the convolution layer and Gen-
eralized Divisive Normalization (GDN) in the variable-
rate encoder and decoder side. Our network utilizes a
pixel RNN approach for quantization. Furthermore, to
improve the whole network, we encode a residual im-
age using LSTM cells to reduce unnecessary informa-
tion. Experimental results demonstrated that the pro-
posed variable-rate framework with novel blocks outper-
forms existing methods and standard image codecs, such
as George’s [11] and JPEG in terms of image similarity.
The project page along with code and models are available
at https://github.com/khawar512/cvpr_image_compress

1. Introduction

Recent deep learning approaches for lossy image com-
pression have been gained significant interest in machine
learning and achieves more promising results. It plays a
significantly important role in streaming a large amount of
image and video data under adequate storage, and low band-
width [4, 5, 7]. Deep learning has made tremendous contri-
butions in neural network-based image coding.

Various image compression methods [2, 9, 11] have
achieved remarkable performance. Ballé et al. [3] pro-
posed a generalized divisive normalization (GDN) based
framework which comprises three main steps: convolu-
tional layer, sub-sampling scheme, and nonlinear GDN lay-

ers. Recently, a novel model for learned image compression
is context-adaptive [6] receives significant performance and
outperforms all image codec. Johannes et al. [3] designed
a simple hyperprior model to add a greater number of bits
in the entropy module. Minnen et al. [8] combined an auto-
regressive with a hierarchical module to obtain better results
in the context of image compression. This work [6] con-
structed a similar technique [3] by combining two different
context models; one is a bit consuming, and the other one is
bit-free contexts to understand a context-adaptive model.

Although CNN-based image compression methods [6,
7, 8], already improved compression accuracy, commonly
mostly methods are increasing more layers and make deeper
network to achieve compression results. These methods
substantially increased model complexity and computa-
tional cost. As far as we know, the development of im-
age compression networks based on RNN is relatively small
compared to CNN and auto-encoders. These techniques
[11, 12] proposed a full image resolution network using
residual scaling, recurrent neural network (RNN), and en-
tropy coding based on deep learning. This network simul-
taneously generated three models during training.

In this paper, two spatial adaptive blocks called analy-
sis and synthesis are proposed in the variable-rate encoder
and decoder side based on a convolution layer and gen-
eralized divisive normalization process. Then, it embeds
with a variable-rate framework. The analysis block gener-
ates a powerful spatial and channel representation with a
down-sampling feature for encoding. Simultaneously, syn-
thesis block up-sampling the decoded image. To the best
of our knowledge, constructing recurrent neural network-
based image compression networks is very limited. This is
the first work that employs a generalized divisive normal-
ization scheme in a variable rate network to handle mul-
tiple bit rates in the RNN network. Furthermore, visual
quality performance and scalability of the proposed blocks
and end-to-end network are jointly validated by the popular
evaluation with PSNR and MS-SSIM. Comprehensive ex-
periments have been performed on Kodak to describe that
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Figure 1. Iterative architecture of image compression framework
based on recurrent neural network. Each input patch was first
passed to the analysis-encoder block to enrich image represen-
tation. Similarly, the synthesis-decoder block reconstructs a de-
coded image with the help of recurrent neural network cells.

the proposed blocks and network jointly achieve significant
performance by comparing standard image codecs JPEG,
BPG, WebP, and recent method George’s [11].

2. Proposed Network

The overall architecture of image compression with two
blocks is presented in Fig 1. Motivated by the recent devel-
opment of image compression networks [11, 10]. There are
three modules with two additional novel blocks in the end-
to-end framework, i.e., encoder network, analysis block,
binarizer, decoder network, and synthesis block. Image
patches are directly given to the analysis block as an input
that generates latent features using the proposed analysis-
encoder block. Then, the latent representation will be
passed to RNN cells for sequence generation. Further, bi-
narizer quantized latent representation using a binary RNN
approach and send it to the decoder network and proposed
synthesis block with decoder network to construct the final
image. Binarization scheme is utilized as [11]. The im-
age compression framework aims to reconstruct the high-
quality image at a given bitrate. It is an important part of
developing a better entropy model. Meanwhile, the process
defined in [11], and construct encoder network which con-
tains one convolutional layer, analysis-encoder block, and
three RNN cells, stateless binarizer contains linear convolu-
tional layer and decoder contains single convolutional lay-
ers with synthesis decoder block with four RNN cells and
one more deconvolutional layer. The single iteration of the
end-to-end framework is represented in Eq 1. The entire
framework architecture is presented in Fig 1.
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Where Enc and Dec are the encoder and decoder with it-
eration t, bin, is binary representation £; is the reconstruc-
tion version of actual image x and v = 0 is one shot re-
construction. The spatial adaptive blocks and end-to-end
variable-rate image compression architecture will be pre-
sented in next two sections. The training process of image
compression network is optimized by adopting the loss at
each iteration based on actual weighted and predicted value.
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The overall loss at each iteration of the variable-rate frame-
work 1is:
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2.1. Analysis Block

An effective spatial adaptive analysis block is proposed
based on spatial information. The proposed block is shown
in Fig 1. The analysis block combines generalized divisive
normalization scheme [1] and utilized as a nonlinear trans-
formation between convolution layers in [6], and [3]. This
parametrizes the nonlinear transformation block, which is
more suitable with gaussian data and natural images. Block
consists of a uniform scalar quantization scheme; it con-
structs a parameterized form of feature vector from the la-
tent representation of the input image vector space. In [3],
a generalized divisive normalization scheme captures spa-
tial information in latent representation is used in the block
for nonlinear transformation. This technique is never uti-
lized in recurrent neural networks. Some work [7] used a
separate attention module on the encoder side and a gaus-
sian mixture model and decoder enhancement module on
the decoder side to reconstruct a better-decoded image. The
structure of our analysis-encoder block contains three input
channels and 64 out channels. The kernel size of layers is
3, and stride is 1. The analysis block consists of the convo-
lution layer, generalized divisive normalization technique.
Every step begins with affine convolution.
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in which i is input channel of k™ step at spatial location
(m, n) as v;®(m,n). xis input image vector corresponds to
u;(m,n), and output vector y is ;¥ (m, n). * represents
2D convolution:
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Where downsampling factor at step k represented with sy.
Every step is followed by the GDN operation. Now, Equ

(7), defined all two stages of GDN operation where [y ; and



Yk,ij are two scale and bias parameters of normalization op-
eration.
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2.2. Synthesis Block

Considering the problem of the final reconstructed im-
age, the image may contain several artifacts. An effective
synthesis block is proposed at the decoder side after quan-
tization to keep the decoded image’s information and qual-
ity. As illustrated in Fig 1, several convolutional and in-
verse GDN layers to reconstruct the input image. Same as
the aforementioned analysis block, the decoder module is
comprised of two phases in which all the processes are in-
versed. After iGDN operation, the feature vector passes into
RNN cells for further reconstruction, and the deconvolu-
tional layer forms the final reconstructed image. Every step
starts from the convolutional layer, and then inverse GDN
operation calculates as follows:
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Inverse GDN comprises three steps, with inverse operation
at each step, downsampling, and Inverse GDN. ﬁgk)(m, n)
is the input k™ synthesis step. The design of our synthesis
block contains 38 input channels and 512 output channels.
The kernel size of layers is 1 and stride is 1 with padding 0.

2.3. RNN Cell

The image compression network comprises RNN units
and a pixel depth scheme. In each iteration, RNN units
are utilized for the extraction of features from the image.
Continuously, memorize the residual state in each iteration
process and reconstruct the image. The entire network uses
seven RNN cells, three cells are encoder side, and four units
are on the decoder side. In every iteration, the estimated
outcome of the previous cell passes to the hidden layer for
further iteration. The simplified view of the RNN cell is il-
lustrated in Fig 2. The hidden and memory layer state of
RNN cell is ¢x—1 and xi_1. The input feature vector for
k™ iteration is x}, that is equal to the upper layer output in
this iteration. Each cell comprises of two convolution lay-
ers; conv_h; works for input feature vector xy, and conv_h;
works for hidden layer.

In the above aforementioned figure, xy, cx—1 and xp_1
are input vectors. Where X denotes element-wise multipli-
cation. Similarly, + represents element-wise addition ci, hy,
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Figure 2. Overview of recurrent neural network cell.

are the output vectors for this cell and input vectors for the
next cell. Here, zj, cx.1 and xy_; are the input vectors from
convolutional layer. cj and hy, are the calculation methods
in each iteration are defined as:
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2.4. Entropy Coding

We enhance the performance of the network by using
different hidden values in binarizer module. As shown in
Fig 3. The approach of pixel RNN [9] as a binary RNN
for image compression with a single convolution layer. The
quantization approach describes in [10] and applies quanti-
zation noise during training. The binarizer part comprises a
single linear convolutional layer with an activation function.
The entire binarizer module generates binary codes within
an interval of (1,—1) with the help of the sign function.
The input feature vectors HxWWx3 could be compressed in
(H/16) x (W/16) x 38 binary code. It means that achiev-
ing bit per pixel in every iteration, which is 1/8 and the
compression ratio of the image is 7" iteration is i/192. The
binarizer layer takes 512 as input channels, and 32 is the
output channels with kernel size 1.

3. Experiments

In order to perform the comparison of proposed work
with recent standard image compression codecs and exist-
ing deep learning-based frameworks are discussed.

3.1. Implementation Details

Different experiments are performed on large-scale
datasets. In our experiment, 20745 high-quality images
from Flickr are adopted and created a subset dataset
that contains 3600 training images and generates ran-
dom patches of 32x32 for training. The total number of
patches is 960, 8744 with batch size 16 and on each epoch
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Figure 3. The comparison of rate-distortion curves with different
hidden values.

(960, 8744/16) is 600,547 iterations. All networks in-
cluded encoder, binarizer, and decoder were trained using
PyTorch, with Adam optimizer. We trained the network for
a 10 epoch using a batch size of 16. The entire framework
was trained using learning rates 0.0005 for ten epochs. Each
tensor of the image represented four values. The tensor con-
tained the batch size 16, image height and width are 32, and
C represented the number of channels in the color image, 3.

3.2. Discussion on Architecture Improvement

We conduct several experiments to improve George’s
[11] architecture. We have found that the output chan-
nels in our architecture do not give much improvement.
Firstly, we add GDN block in encoder and decoder mod-
ules, which substantially improves PSNR and SSIM. Sec-
ondly, we modify the hidden values in binarizer as [512, 32]
to [512,38], and in decoder hidden values as [32,512] to
[38, 512]. Thirdly, we changed the encoder hidden values as
[64,128] to [256,512] combining experiments with GDN.
Lastly, we set the encoder values as [64, 128] and remain
changed in binarizer module, correspondingly. This work
employed RNN cells with the implementation of GDN with
the hyperparameters. The findings of our experiments are
presented in Fig 3. Experiments have shown that the hid-
den values in binarizer module with GDN blocks [512, 38]
could be better than hidden values [512,32] in terms of
PSNR. This improvement remains the same in MS-SSIM.
Finally, in the above-aforementioned experiments, the value
of Block+ Conv(Enc64+ Bin38) has been utilized in our
network.

GDN/iGDN vs Conv. To evaluate the visual quality of
the analysis and synthesis blocks. We integrate them into
our network. In this model, both blocks are removed from
George’s [11] architecture. We followed a straightforward

propagation in the network. As shown in Fig 3. the only
Conv layer does not perform well. Then, we added a convo-
lution and GDN layer in all forward propagation operations.
As presented in Fig 3, the architecture with analysis and
synthesis block contains significantly better than George’s
[11] in terms of visual similarity and rate-distortion.

Coding efficiency. To compare the performance of stan-
dard image codecs and existing methods, experiment on a
widely used Kodak dataset (24 testing images) has been
conducted. The rate-distortion curves by taking the dif-
ferent quality factors of each Kodak image are shown in
Fig 4. In each image, 20 images are generated with dif-
ferent quality starting from lower value to higher value,
ie., @ = 5,10,15,20....100. The residual image for the
BPG codec is encoding with different quantizer parame-
ters starting from QP = 51,46,41..., and chroma sam-
pling (YUV4:2:0 format). We evaluate our image com-
pression network’s visual quality and existing variable rate
methods George’s [11], and standard image codecs JPEG,
HEVC intra-coding based BPG, and WebP. Perceptual full-
reference quality metrics for comparing the original image
and reconstructed image are employed. Thus, MS-SSIM
and PSNR well-defined quality metric designed for image
compression algorithms are used. MS-SSIM on RGB im-
ages is applied to calculate average results, and the output
of the MS-SSIM quality metric is between O and 1. The
higher value of the quality metric always represents that the
actual image is closer to decoded image.

Visualization. To verify the quality of the image, we vi-
sualize the performance of our reconstructed images in each
iteration with our variable-rate model. The comparison re-
sults of our proposed network and other image codecs are
presented in Fig. 4 respectively. The results are compared
with the original image, George’s [11] (4:2:0). As illus-
trated in Fig. 4, the proposed network with blocks gives
a high similarity compare to the previous methods [11].
The visual performance of JPEG and JPEG2000 has worst
because the edges contain ringing artifacts. The results of
HEVC based BPG are clearer, and smoother compare with
JPEG. Compare with George’s [11] and JPEG in terms of
SSIM. The PSNR score is a little lower than BPG and WebP
(in sampling factor 4:2:0 format). However, the proposed
variable-rate method achieves better MS-SSIM, especially
at the tenth epoch.

4. Conclusion

In this paper, two effective blocks i.e., analysis and syn-
thesis blocks, are proposed based on convolutional layers
and GDN layers embedded into RNN based image com-
pression network. The pixel RNN approach is adopted
and constructs a pixel-wise binary quantization scheme with
some hidden values using linear convolution. Furthermore,
to more enhance the performance of the network, RNN cells
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Figure 4. Comparative results of variable-rate network with analysis and synthesis block with recent approaches on kodak benchmark in

terms of MS-SSIM (left side) and PSNR (right side) vs. BPP.

are utilized. These cells are placed in the encoder and de-
coder sides to increase performance. The results illustrate
that the framework with novel blocks outperforms George
[11] method and standard images such as BPG and JPEG.
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