
A. Details of NIC codecs
Encoding consists of a learnable nonlinear mapping z =

f̃ (x; ✓) where the feature encoder is parametrized by ✓ that
maps an input image x 2 RN to a latent representation
z 2 RM . However, the latent representation is still re-
dundant and in continuous space, which is not amenable
to transmission through digital communication channels.
Thus, the latent representation is quantized as q = Q (z),
where q 2 ZM is a discrete-valued symbol vector (in
this paper we use quantization to the nearest integer, i.e.
q = bze). Finally, the symbol vector q is binarized and
serialized into the bitstream b, using a (lossless) entropy
encoder that exploits its statistical redundancy. Entropy
coding is reversed during the process of decoding to ob-
tain q, which is then processed by the feature decoder in
order to obtain the reconstructed image. This is be summa-
rized by x̂ = g̃ (q;�), where x̂ 2 RN is the reconstructed
image, and the feature decoder, g̃ is parametrized by �. In
particular, we follow the framework of Balle et al. [3, 4],
which combines convolutional layers, generalized divisive
normalization (GDN) [2] and inverse GDN layers, scalar
quantization and arithmetic coding.

During training, quantization is replaced by a differen-
tiable proxy to allow end-to-end training via backpropaga-
tion [3]. In this paper, additive uniform noise z̃ = z +�z,
with �z ⇠ U
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is used as the proxy. Rate is

estimated as the entropy of the quantized symbol vector
R (b) ⇡ H [Pq] ⇡ H [pz̃ (z̃; ⌫)], where ⌫ are the param-
eters of the entropy model. The entropy model is known
by both encoder and decoder. After training, the full model
is thus determined by parameters  = (✓,�, ⌫), with the
full (including arithmetic coding) encoder f (x; ✓, ⌫) and
decoder g (b;�, ⌫).

The parameters  are learned by minimizing a combina-
tion of rate and distortion over a training set X tr sampled
from the domain of interest X
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where � is the (fixed by design) tradeoff between rate and
distortion. In this paper, distortion is measured as the aver-
age reconstruction mean square error (MSE)
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and rate estimated as the average entropy

R
�
X tr

, 
�
= Ex2X trH [pz̃ (z̃; ⌫)] . (4)

B. Related work

Image compression Widely used image and video coding
standards are based on the successful combination of pre-
diction of pixels in small blocks, linear transforms (typi-
cally DCT), quantization and entropy coding [15]. Most

Table 3. Comparison of the number of parameters between base
model and CAwF

Filters Encoder Entropy Decoder Total
model parameters

Base 64 324736 6208 324675 655619
CAwF 80 505760 7760 505683 1019203

advanced standards include carefully designed prediction
and coding tools that greatly improve coding efficiency and
quality [17, 11, 5]. Due to the pervasiveness of strictly de-
fined decoder implementations in consumer devices, back-
ward compatibility with legacy standards has always been
a desirable characteristic in applications using image and
video coding. A consequence of such approach is very lim-
ited adaptability of underlying codecs, leading to subopti-
mal use of compression technology in many application do-
mains.

In contrast, NIC uses highly flexible parametric archi-
tectures whose parameters are learned from data. A typi-
cal architecture consists of a deep autoencoder followed by
quantization and entropy coding (using differentiable prox-
ies during optimization) [12, 3, 4, 14]. Recent methods in-
clude hyperpriors [4] and autoregressive probability mod-
els [14] to improve performance. However, the application
of adapting learned image codecs to new domains while
keeping the performance and compatibility with the origi-
nal domain has not been considered.
Transfer learning and domain adaptation Deep neural
networks (pre)trained on large datasets, can be reused and
adapted (e.g. fine tuned) to specific target tasks, even with
limited data (i.e.transfer learning) [1]. Domain adapta-
tion [16] is the specific case when the task remains the same
across domains (e.g. source and target tasks have the same
categories). Here, we address domain adaptation in the con-
text of image compression.
Continual learning Continual learning [10] addresses chal-
lenging scenarios where the model has to learn from con-
tinually arriving non-i.i.d. data from new unseen cate-
gories, domains or tasks. The most characteristic problem
in this setting is the (catastrophic) forgetting [9] of previ-
ously learned skills, due to the interference between previ-
ous domains or tasks. It is often addressed using specific
regularization, (pseudo)rehearsal of previous data or using
task-specific parameters. Here, we study and address inter-
ference and forgetting in NIC.


