
Subjective Quality Optimized Efficient Image Compression

Xining Wang†, Tong Chen†, and Zhan Ma‡

Vision Lab, Nanjing University
†{wangxn,tong}@smail.nju.edu.cn,‡mazhan@nju.edu.cn

Abstract

In this paper, we propose an efficient image compres-

sion framework that is optimized for subjective quality. Our

framework is mainly based on the NLAIC (NonLocal Atten-

tion Optimized Image Coding) model which applied Vari-

ational Autoencoder (VAE) and non-local attention mod-

ule to end-to-end image compression. This work makes

two major contributions to the NLAIC framework. First,

our models are optimized for subjective-friendly loss func-

tions rather than conventional MSE (Mean Squared Error)

or MS-SSIM (Multiscale Structural Similarity) which was

widely used in previous works. Second, we introduce block-

based inference mechanism to reduce the running memory

consumption of the image compression network, and sug-

gest a partial post-processing step to alleviate block arti-

facts caused by block-based inference in a lightweight com-

putational fashion. Experiments have proved that the image

reconstructed by our method can preserve more texture de-

tails than models trained for optimal MSE or MS-SSIM and

also present capability for high-throughput decoding.

1. Introduction

Image coding, which is also known as image compres-

sion, refers to the idea that representing the image by a small

number of bits under the condition of meeting certain qual-

ity evaluation. Traditional image coding methods like JPEG

[12], JPEG2000 [9] and BPG [5] use linear transform or in-

tra prediction to map the image to the transformed domain,

and then perform quantization and entropy coding. With

the rapid development of Deep Neural Networks (DNNs),

learning-based image coding has improved the performance

by introducing non-linear transform to image coding. Ballé

et al. [3] applied the VAE to construct an end-to-end im-

age compression framework, and further utilized a hyper-

prior module to generate more accurate probability estimate

for latent features [4]. Recently, Chen et al. [6] introduced

sparse non-local processing and 3-D masked convolutional

neural network (CNN)-based context model into the VAE

structure for optimized bit rate allocation and probability

M
a

in

 E
n

c
o

d
e

r

Q

AE

AD

……

Q

AE

AD

……

(μ,σ)

Partial Post

Processing

Module

Split into

blocks

 H
y
p

e
r

 E
n

c
o

d
e

r

H
y
p

e
r

 D
e

c
o

d
e

r

M
a

in

 D
e

c
o

d
e

r

Figure 1: General Framework Illustration of Variational

Autoencoder (VAE)-based Image Coding

estimation.

Image compression methods mentioned above were

mainly optimized for MSE or MS-SSIM [14], which failed

to closely match the subjective quality of human perception.

However, the key problem for image coding is to retain bet-

ter subjective quality given the bit rate constraint because

the human visual system (HVS) is the ultimate receiver

for image content consumption. Recently, VGG-based [13]

perceptual loss like DISTS [7] and LPIPS [16] and gener-

ative adversarial networks (GAN) made learning-based im-

age compression codec more visually pleasing. For exam-

ple, Mentzer et al. [11] and Agustsson et al. [2] followed

the idea of rate-distortion-perception theory and used GAN

to make reconstructed images more subjective-friendly.

In this work, we combine the idea of VAE-based and

GAN-based image compression and propose a fast image

codec with better subjective quality in reconstructed im-

ages. Unlike the usual way for training the VAE-based end-

to-end image compression network, we train our codec in

three steps, and in each step different modules are optimized

by individual loss functions. Also, we propose block-based

inference and a partial post-processing module. Our partial

post-processing module can effectively reduce the block ar-

tifact caused by block-based inference with negligible com-

putational overhead.

1

M
a

in

 E
n

c
o

d
e

r

Q

AE

AD

……

Q

AE

AD

……

(μ,σ)

 H
y
p

e
r

 E
n

c
o

d
e

r

H
y
p

e
r

 D
e

c
o

d
e

r

M
a

in

 D
e

c
o

d
e

r

Conditional

Discriminator

Neural Image Codec

(a) Framework overview

C
o

n
v
 k3

n
1
2

L
e

a
ky

R
e

L
u

U
p

S
a

m
p

le

1
6

C
o

n
c
a
t

C
o

n
v
 s2

k
3
n

6
4

L
e

a
ky

R
e

L
u

C
o

n
v
 s2

k
3
n

1
2
8

L
e

a
ky

R
e

L
u

C
o

n
v
 s2

k
3
n

2
5
6

L
e

a
ky

R
e

L
u

C
o

n
v
 s2

k
3
n

5
1
2

L
e

a
ky

R
e

L
u

(b) The conditional discriminator module

Figure 2: Training framework.

2. Proposed Method

Figure 1 shows the framework of our method which

mainly follows the idea of NLAIC [6] but removes the au-

toregressive context model to ensure fast decoding. We first

split the input image x into blocks x′ that can be encoded

and decoded independently to avoid the large memory con-

sumption that grows with the size of the input image. Each

block in x′ is transformed into latent features y′ by main

encoder and then put into the hyper encoder and decoder

which generate the mean µ and variance σ to estimate the

distribution p(ŷ′|ẑ′) for the quantized latent features ŷ
′
.

The output of the hyper encoder z′ is quantized to ẑ
′

and

encoded as the side information. On the decoding side,

the main decoder transforms decoded ŷ
′

to reconstructed

blocks x̂
′

and the partial post-processing module puts the

reconstructed blocks together and reduces block artifacts

caused by block-based coding and decoding.

2.1. Training with Subjective­Friendly Loss

Our method combines the idea of VAE-based image

codec with GAN-based image codec by proposing a three-

stage training and uses different loss functions to train dif-

ferent parts of our image codec. First, we train the neural

image codec which is shown in Figure 2 (a) with the com-

monly used Rate-Distortion (RD) loss function which is for-

mulated in Eq. 1, where d(x′, x̂′) denotes the distortion be-

tween the ground truth image and the reconstructed image

output by the neural image codec. We use the weighted sum

of MSE and the perceptual loss DISTS [7] as the distortion

Post

Processing

Network

(a) Partial post-processing process

C
o
n

v
 k

3
n

1
2

8

R
e
L

u

R
e
s
B

lo
c
k

R
e
s
B

lo
c
k

R
e
s
B

lo
c
k

…

R
e
s
B

lo
c
k

C
o
n

v
 k

3
n

3

9 ResBlocks

+

(b) Structure of post-processing network

Figure 3: Partial post-processing.

to ensure subjective quality while minimizing checkerboard

artifacts when optimizing models for DISTS only, as formu-

lated in Eq. 2. r(ŷ′) means the estimated bitrate of ŷ′ under

the condition of ẑ′ and r(ẑ′) means the estimated bitrate of

ẑ
′, denoted as Eq. 3 and Eq. 4 respectively.

Lrd = λ ∗ d(x′, x̂′) + r(ŷ′) + r(ẑ′) (1)

d(x′, x̂′) = w1 ∗MSE(x′, x̂′) +DISTS(x′, x̂′) (2)

r(ŷ′) = −Σilog2(pŷ′

i
|ẑ′

i
(ŷ′i|ẑ

′
i)) (3)

r(ẑ′) = −Σilog2(pẑ′

i
(ẑ′i)) (4)

In the second stage, we train the conditional discrimina-

tor [11], as illustrated in Figure 2 (b), with the loss func-

tion formulated below. Conv sakbnc means the convolution

layer whose step size is a, kernel size is b∗b and the number

of output channels is c. In this stage, we try to enable the

discriminator to distinguish between the original image and

the reconstructed image of the neural image codec.

LD = −E[log2(1−D(x̂′, ŷ′))−E[log2(D(x′, ŷ′))] (5)

At last, we use the trained conditional discriminator to

fine-tune our main decoder, just like the training of the gen-

erator when training the GAN-based image codec using the

formulation below. We use not only the GAN loss gener-

ated by the conditional discriminator but also the weighted

sum of GAN loss and DISTS to provide extra restriction on

the finetuning of the main decoder.

LDd = −w2 ∗E[log2(D(x̂′, ŷ′))] +DISTS(x′, x̂′) (6)

2.2. Partial Post­processing

Current learning-based post-processing methods usually

feed the whole reconstructed image into the neural network

2

(a) (b) (c)

Figure 4: The effect of the partial post-processing

module. (a) ground truth; (b) reconstruction w/o post-

processing; (c) reconstruction w/ partial post-processing.

[15, 10] to avoid block artifacts in reconstructed images

caused by block-based inference, which leads to huge but

unnecessary calculation. In this section, we introduce a sim-

plified partial post-processing module after the main de-

coder that has much lower computational complexity but

can effectively reduce block artifacts.

Figure 3 (a) illustrates the process of partial post-

processing. Rather than feed the whole reconstructed im-

age into the network, our method only put the rectangu-

lar area near block boundaries into the post-processing net-

work which is shown in Figure 3 (b), thus reducing cal-

culations. To further reduce the discontinuity caused by

directly replacing the boundaries with the output of the

post-processing network, we perform a weighted summa-

tion of the output and input of the post-processing net-

work. Here, we denote the pixels in the xth column of

the post-processing network’s output by the post-processing

network as Y (x) and the pixels in the xth column of the

post-processing network’s input as X(x). Y ′ denotes the

output after weighted summation, w denotes the width of

processed boundaries and σ denotes the variance of the

Gaussian-like weight. The whole process can be formulated

as follows:

Y ′(x) = Y (x)Wp(x) +X(x)(1−Wp(x)) (7)

Wp(x) = e−
(x−

w

2
)2

2σ2 (8)

Figure 4 shows the effect of the partial post-processing

module. It can be seen that reconstructed image with block

artifacts which is shown in Figure 4 (b) has been sig-

nificantly reduced after passing through our partial post-

processing module.

3. Experimental Results

3.1. Experimental Conditions

Our network structure uses a simplified version of

NLAIC [6] by removing the auto-regressive context model.

Specifically, we set the number of channels of the convolu-

tional layer in the main encoder and main decoder to 192

Table 1: Experimental results on CLIC2021 validation

dataset.

bpp 0.075 0.148 0.266

PSNR (dB) 26.653 28.295 31.429

MS-SSIM 0.910 0.940 0.971

FID 194.696 183.518 155.656

Decoding Time (ours) 488s 583s 745s

Decoding Time 1 5136s 6319s 7784s

1.averaged over top 10 submissions measured by FID in

validation phase.

and set the number of channels of the convolutional layer

in the hyper encoder and hyper decoder to 128. We use Py-

torch and NVIDIA 1080Ti GPU for training and test, except

for the memory consumption test which is performed on a

2-core CPU with 16G memory.

Images in the training dataset are cropped to the size

of 256×256 and a total of 600k patches are generated for

training. We first train the image codec for 15 epochs, set-

ting w1 as 100, then train the conditional discriminator for

2 epochs, finally set w2 as 1 and fine-tune the main decoder

for 2 epochs. Adam [8] optimizer is used. The initial learn-

ing rate is set to 5e-5 and cut by half every 3 epochs after

the 7th epoch. The learning rate is fixed to 5e-5 when train-

ing the conditional discriminator and finetuning the main

decoder.

When training the partial post-processing module, the

images in the training dataset are cropped into non-

overlapping blocks of 128×128 pixels and coded/decoded

independently by the deep neural codec. The reconstructed

blocks are then spliced into images of 256×256 pixels as

the training input of the post-processing network. The

learning rate and the number of epochs are set as the same as

the training parameters of the conditional discriminator. To

simplify the training process, we use MS-SSIM for training

the partial post-processing network rather than the percep-

tual loss functions mentioned above.

During test, we divide input images into non-overlapping

blocks with a size of 2048×1024 pixels and set the width of

partial post-processing w to 128 pixels.

3.2. Results

We use two images in Kodak dataset to show the sub-

jective results of our method as shown in Figure 5. It can

be seen that the reconstructed images don’t perform well

when using PSNR or MS-SSIM as the metric. However,

by observing (c), (e) and (f), it can be seen that at simi-

lar or even lower bit rates, more details in the images are

preserved such as the wall’s texture in the pictures above

and the grass in the pictures below. Figure 6 shows the

RD curve tested on the Kodak [1] dataset, where the dis-

tortion is measured by FID using pytorch-fid (https:

3

(a)

bpp:0.4562

PSNR:26.6135

MS-SSIM:0.9562

bpp:0.5917

PSNR:24.0932

MS-SSIM:0.9473

(b)

bpp:0.2591

PSNR:24.8371

MS-SSIM:0.9279

bpp:0.1445

PSNR:23.1413

MS-SSIM:0.8853

bpp:0.3269

PSNR:22.3078

MS-SSIM:0.9097

(c)

bpp:0.1387

PSNR:20.5005

MS-SSIM:0.8297

(d)

bpp:0.3712

PSNR:27.7508

MS-SSIM:0.9617

bpp:0.2885

PSNR:25.6656

MS-SSIM:0.9665

bpp:0.3773

PSNR:22.9622

MS-SSIM:0.9595

(f)

bpp:0.4584

PSNR:24.4612

MS-SSIM:0.9429

(e)

Figure 5: Experimental results using Kodak dataset.(a) ground truth; (b) reconstructed images of high bitrate model; (c)

reconstructed images of middle bitrate model; (d) reconstructed images of low bitrate model; (e) reconstructed images of

MSE model; (f) reconstructed images of MS-SSIM model.

//github.com/mseitzer/pytorch-fid). We can

see that our method outperforms NLAIC baselines opti-

mized for MSE and MS-SSIM. Also, we test our method on

the CLIC2021 dataset whose results are shown in Table 1.

The results show that our method performs well in the FID

metric with a much faster decoding speed compared with

the top ten methods besides ours on the CLIC2021 valida-

tion leaderboard.

Table 2: Complexity comparison of full-image post-

processing and partial post processing.

FLOPs
Memory

Consumption

Full-image

Post-processing
15694G Out of memory

Partial

Post-processing
1473.84G 3314.113MB

Moreover, to compare the memory consumption and

computational complexity between typical full-image

post-processing and our proposed partial post-processing

method, experiments are performed on images of 2K res-

olution (2048×1363) in the CLIC2021 validation datasets.

It can be seen from Table 2 that our partial post-processing

module saves over 10× FLOPs compared with full-image

post-processing. Also, we can limit the memory consump-

tion of post-processing to about 3GB, while for the full-

image post-processing, it is even above the overall memory

capacity of our test platform with 16GB memory.

Figure 6: RD curve measured by FID.

4. Conclusion

In this paper, we brief the approach used for our

CLIC2021 submission. Our method is designed on the ba-

sis of simplified VAE-based NLAIC and GAN-based im-

age compression method. In addition, we propose a block-

based inference and partial post-processing module to limit

the memory consumption of image compression and re-

duce the blocking artifacts with less FLOPs and memory

consumption. Experiments have proved that the proposed

method can preserve more details of the original image in

the reconstructed image. In the future, we will further an-

alyze how different metrics would affect the distortion so

as to design better quality metrics for subjective-friendly

learned image compression codec.

4

References

[1] Kodak lossless true color image suite. http://r0k.us/

graphics/kodak/, Dec. 15th 2016. 3

[2] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,

Radu Timofte, and Luc Van Gool. Generative adversar-

ial networks for extreme learned image compression. In

2019 IEEE/CVF International Conference on Computer Vi-

sion (ICCV), pages 221–231, 2019. 1

[3] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.

End-to-end optimized image compression. In International

Conference on Learning Representations, 2017. 1

[4] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compres-

sion with a scale hyperprior. In International Conference

on Learning Representations, 2018. 1

[5] Better Portable Graphics. https://bellard.org/

bpg/, 2018. 1

[6] T. Chen, H. Liu, Z. Ma, Q. Shen, X. Cao, and Y. Wang. End-

to-end learnt image compression via non-local attention op-

timization and improved context modeling. IEEE Transac-

tions on Image Processing, 30:3179–3191, 2021. 1, 2, 3

[7] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli.

Image quality assessment: Unifying structure and texture

similarity. CoRR, abs/2004.07728, 2020. 1, 2

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv:1412.6980v9, Jan. 2017. 3

[9] D. T. Lee. Jpeg 2000: Retrospective and new developments.

Proceedings of the IEEE, 93(1):32–41, Jan 2005. 1

[10] Jooyoung Lee, Seunghyun Cho, and Munchurl Kim. An end-

to-end joint learning scheme of image compression and qual-

ity enhancement with improved entropy minimization. arXiv

preprint arXiv:1912.12817, 2019. 3

[11] Fabian Mentzer, George D. Toderici, Michael Tschannen,

and Eirikur Agustsson. High-fidelity generative image com-

pression. In Advances in Neural Information Processing Sys-

tems, volume 33, pages 11913–11924, 2020. 1, 2

[12] Overview of JPEG. https://jpeg.org/jpeg/, 2018.

1

[13] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. Computer Sci-

ence, 2014. 1

[14] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-

scale structural similarity for image quality assessment. In

Signals, Systems and Computers, 2004. Conference Record

of the Thirty-Seventh Asilomar Conference on, volume 2,

pages 1398–1402. Ieee, 2003. 1

[15] Yaojun Wu, Xin Li, Zhizheng Zhang, Xin Jin, and Zhibo

Chen. Learned block-based hybrid image compression.

arXiv preprint arXiv:2012.09550, 2020. 3

[16] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep

features as a perceptual metric. In CVPR, 2018. 1

5

