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Abstract

Although learned approaches to video compression have

been proposed with promising results, hand-engineered

video codecs are still unbeaten. On the other hand, learned

image compression has already surpassed traditional im-

age codecs. In this paper, we propose a learned video com-

pression system that mimics part of the pipeline of tradi-

tional codecs while leveraging learned image compression.

It comprises two main modules: a learned intra-frame com-

pression module, and a learned inter-frame compression

module that is conditioned on intra-coded frames. These

modules use separate learned probability models for en-

tropy coding. The intra-frame codec uses a variant of non-

local attention layers. Regarding the inter-frame codec, we

propose an implicit motion information mechanism, and an

enhancement of the inter-frame predictions by leveraging

the high quality information of intra-coded frames. On the

learned probability model side, we propose to use the ref-

erence frames as additional conditioning information. We

used this system as our submitted entry for the 2021 Chal-

lenge on Learned Image Compression (CLIC). In our ex-

periments, we show the effectiveness of our system and its

components via a set of ablation studies.

1. Introduction

Recently, neural networks have been applied to image

and video compression with promising results. Learned

image codecs represent now the state-of-the-art when con-

sidering both MS-SSIM [3] and PSNR [6] as the vi-

sual quality metric. They typically follow the auto-

encoder paradigm, where the encoder and decoder net-

works operate as non-linear transform and inverse trans-

form, respectively. In the area of video compression in-

stead, hand-engineered video compression systems, such

as VVC/H.266 [1] HEVC/H.265 standard [14], are still the

state-of-the-art. These systems are mostly based on intra-

frame and inter-frame prediction, followed by transform-

coding of prediction residuals. There are mainly three gen-

eral approaches for using machine learning techniques for

video compression. In a first approach, one or more com-

ponents of a traditional codec are replaced or augmented by

a neural network. For example, in [4], inter-frame predic-

tion of HEVC is improved by using a deep CNN to produce

spatially-varying filters from the decoded frames to synthe-

size the predicted patch. A second approach considers an

architecture that is similar to learned image codecs, where

a block of frames is provided to an auto-encoder [7]. A

third approach follows a similar pipeline as the one in state-

of-the-art traditional codecs, such as [15, 16] where an im-

age compression model compresses key frames and a con-

ditional interpolation model interpolates the other frames.

Various probability models have been proposed for loss-

less and lossy compression systems based on entropy cod-

ing. For lossless image compression, PixelCNN [13] and

PixelCNN++ [12] model the pixels in an autoregressive

manner. The pixels that have been already decoded are used

as context to derive the probability distribution of the next

pixel. The decoding is performed sequentially in a raster

scan order. For lossy compression, [2] proposed a Hyper-

prior model where global context information is first de-

rived and encoded separately. The probability distribution

is calculated on the condition of this global context informa-

tion. In [3, 11], the Hyperprior model is combined with the

PixelCNN style of autoregressive model, where both global

context and local context from already decoded pixels are

used. [17] proposed a multi-scale probability model where

the pixels are processed in multiple scales and contexts are

built from low-resolution scales. Although the autoregres-

sive model and the multi-scale model can achieve a better

compression performance, the decoding time can not meet

the requirement of the CLIC challenge. In our system, the

Hyperprior probability model [2] is used to achieve a bal-

ance of decoding speed and estimation accuracy.

In this paper, we describe our end-to-end learned video

compression system that we submitted to the 2021 Chal-



lenge on Learned Image Compression (CLIC), video com-

pression track. Our team name was nvc. Our system com-

prises an intra-frame compression sub-system and an inter-

frame compression sub-system, both end-to-end learned.

The intra-frame codec is based on an auto-encoder archi-

tecture using a variant of the non-local attention blocks [9]

and a learned probability model. The inter-frame codec in-

cludes a prediction of a frame given two reference frames.

We propose to: (i) enhance the frame prediction by using

intra-codec frames, (ii) use only implicit motion informa-

tion, (iii) provide the probability model with additional in-

formation from the reference frames. In [16], quality fea-

tures are signalled from encoder to decoder to control the

contribution of previously decoded frames on the current

frame, by adapting the forget and update gates of an LSTM

module. However, we do not use any recurrent neural net-

work and our encoder does not need to encode any informa-

tion about quality.

2. Proposed methods

Our video codec can be divided into two sub-systems:

the intra-frame codec and the inter-frame codec. The intra-

frame codec is used to process one frame every nine frames

and it does not use any information from other frames. The

seven frames between two consecutive intra-frames are pro-

cessed by the inter-frame codec in a hierarchical sequen-

tial manner, i.e., first the frame with index 4 (relative to the

start of the intra-frame period) is predicted from intra-coded

frames {0, 8}, then frame 2 and frame 6 are predicted from

intra or inter-coded frames {0, 4} and {4, 8}, respectively,

finally frames 1, 3, 5 and 7 are predicted from intra or inter-

coded frames {0, 2}, {2, 4}, {4, 6} and {6, 8}, respectively.

2.1. Intraframe codec

As shown in Figure 1, our intra-frame codec has an au-

toencoder architecture similar to other end-to-end learned

image coding systems [3, 9, 11]. Light gray boxes are 2D

convolution operators where the texts in the boxes indicate

kernel size, input channels, output channels, and an optional

stride value if it is not 1. Yellow boxes are transposed 2D

convolution operators with the same format of texts in them.

An input image is first transformed by an input 2D convo-

lution operator and a ReLU activation function to a feature.

Then, a sequence of Trunk components and 2D convolution

operators with a stride value of 2 convert and downsam-

ple the feature to a latent representation of the input frame.

The Entropy Model component quantizes and compresses

the latent representation into a bitstream. In the Entropy

Model, the Hyperprior probability model [2, 11] is used to

estimate the probability distribution of the quantized latent

representation. The decoder has a mirrored architecture as

the encoder, where transposed convolution operators with

stride of 2 are used for upsampling.

Our Trunk component incorporates non-local attention

and channel attention mechanisms. Non-local attention,

which increases the receptive field to the whole input im-

age, has been shown to significantly improve the quality of

compressed images in the literature [6, 9]. However, since

the memory consumption of the non-local attention block is

proportional to the area of the input tensor, we only apply

the non-local attention mechanism to the Trunk components

operated on the downsampled features. The channel atten-

tion technique helps image codecs to improve the compres-

sion performance [3, 18]. In our intra-codec, the final at-

tention signals are generated by a sigmoid function applied

to the sum of the non-local attention branch and channel

attention branch. Features generated by the attention mech-

anism are used as residuals and added to the input features

to generate the final output of the Trunk component. The

ResBlocks component in the intra-frame codec comprises a

sequence of basic Resnet blocks [8].

2.2. Interframe codec

An overview of the inter-frame codec is provided in Fig-

ure 2. Components that share weights are shown with the

same color. The inputs to the encoder are two reference

frames x̂t−1, x̂t+1 and the target frame xt. The reference

frame may be reconstructed intra-frames or B frames. First,

the Encoder Feature Pyramid Net extracts multi-scale fea-

tures from the input frames. Next, the multi-scale features

are aggregated by the Bridge Net and transformed to a latent

representation of the target frame. Then, the Entropy Model

quantizes and compresses the latent representation into a

bitstream. We adopted the Hyperprior probability model

[2, 11] as the probability model in our Entropy Model. The

Hyperprior probability model uses a context built from the

input tensor to derive the probability distribution of the ele-

ments in this tensor. To improve compression performance,

we enrich the context with extra information derived from

the two input reference frames. The two reference frames

are transferred to two intermediate tensors by the Entropy

Feature Pyramid Net. Then, these two intermediate tensors

are concatenated and given to the probability model as an

extra context.

Figure 3 shows the architecture of the Bridge Net, where

f
(1/2/3)
t are features in 3 scales generated from the target

frame xt by the Encoder Feature Pyramid Net; f
(1/2/3)
t−1 and

f
(1/2/3)
t+1 are the corresponding features generated from the

reference frames. The gray boxes in the figure are 2D con-

volution operators with the kernel size, input channels and

output channels illustrated in the boxes. At each scale, the

features from the target frame and reference frames are first

transformed by a 2D convolution operator to generate inter-

mediate features. The intermediate features and the down-

sampled output from the previous scale are concatenated

and given to the Aggregator component to generate the out-
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Figure 1. Architecture of the intra-frame codec
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Figure 2. Architecture of the inter-frame codec
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Figure 3. The Bridge component, part of the inter-frame encoder.

put of this scale. The Aggregator component consists of one

2D convolution operator and two basic residual blocks [8].

The output from the Aggregator of the last scale is further

transformed by a 1x1 2D convolution operator to generate

the latent representation of the target frame.

The decoder takes the compressed bitstream of the latent

representation as its input. The bitstream is first decom-

pressed and dequantized to generate a reconstruction of the

latent representation by the Entropy Model. Like the encod-

ing process, the Entropy Model also uses the intermediate

tensors from the reference frames as the auxiliary context

to estimate the probability distribution. The latent represen-

tation is implicitly embedded with motion information and

residuals. The decoder uses the motion information to warp

the reference frames to generate a prediction of the target

frame. The predicted target frames by the reference frames

are combined by the Combiner component to produce the

final prediction x̃t. Then, the residual is added to x̃t to gen-

erate the final reconstructed target frame x̂t.

At the decoder side, Feature Pyramid Decoder takes the

reconstructed latent representation as its input and gener-

ates multi-scale motion features and one residual output.

The Motion Estimation component is responsible for mo-

tion estimation given the two sets of multi-scale features.

One set of the multi-scale features is the output from the



Figure 4. The Combiner, part of the inter-frame decoder.

Feature Pyramid Decoder, and the other set is generated

from the reference frame using a Decoder Feature Pyramid

Net. The Motion Estimation is a component that has a sim-

ilar architecture as FlowNet [5, 16]. Different from other

systems [10], the Motion Estimation is randomly initialized

and end-to-end learned together with other components in

the system. After the motion estimation, the system gen-

erates temporary predictions of the target frame from the

reference frames using a warping operation performed by

the Frame Prediction component.

The two temporary predicted reference frames, together

with the two closest intra-coded frames are concatenated

and given to the Combiner to generate the final prediction of

the target frame. Figure 4 illustrates the architecture of the

Combiner. It takes the closest intra-coded frames x̂intra1

and x̂intra2, and the temporary predictions of the target

frame f̂1
t and f̂2

t as its inputs. The blended version, i.e.

arithmetic mean, of the two reference frames are added to

the output of the last 2D convolution operator of the Com-

biner. This design follows the residual paradigm of many

deep learning systems [8]. The output of the Combiner is

added to the residual output from the Feature Pyramid De-

coder to generate the final reconstructed target frame x̂t.

Both the intra-frame codec and the inter-frame codecs

were trained on 256x256 patches, by using MS-SSIM and

rate loss as the training objectives: L = D+λR, where the

distortion D is the negative MS-SSIM, R is the rate derived

from the probability model, and λ is a hyper-parameter. The

intra-frame codec was trained only as a stand-alone module.

The inter-frame codec was first pretrained as a stand-alone

module, by using uncompressed reference frames, and then

finetuned by using a similar pipeline as at inference time,

i.e., by using intra-coded frames and inter-coded frames as

reference frames in hierarchical sequential processing.

3. Experiments

All the training sessions were performed on the CLIC

video dataset, using the Adam optimizer. We trained our

Model Data BPP MS-SSIM Loss

Full Whole 0.02490 0.96495 −0.95723

Full Subset 0.01616 0.96381 −0.95880

NoIE Subset 0.01837 0.96259 −0.95689

NoIECN Subset 0.00712 0.69398 −0.69177

Table 1. Experimental results. ”Full”: full model. ”NoIE”: no

intra-guided enhancement. ”NoIECN”: the Combiner module in-

cludes only a linear combination of temporary predicted frames.

”Whole” and ”Subset” refer to whole CLIC data split and a subset

of it, respectively. ”Loss” is the evaluation loss.

intra-frame codec on all the frames of all videos in the

dataset for 20 epochs, with a learning rate of 5e-5 and batch-

size of 32 frames. The inter-frame codec was pretrained

on uncompressed reference frames with a distance from the

target frame randomly chosen from the set {1, 2, 4}, for 6

epochs, a learning rate of 3e-5 and batch-size of 16 sets

of two reference and one target frames. Finetuning of the

inter-frame codec is performed on all frames of all videos

in the dataset, for 4 epochs, with a learning rate of 8e-5 and

batch-size of 54 sets of 9 frames. The first row of Table 1

reports the results on the validation set. In addition, we re-

port the results of an ablation study for the following setups:

the full proposed system, the case without intra-frame en-

hancement, and the case where the Combiner includes only

the arithmetic mean of temporary predicted frames. The

ablation study is performed by training on only 26 videos

from the CLIC training dataset, and evaluating on 10% of

the frames in those videos. The ”Loss” values were com-

puted on the evaluation set by using λ = 0.31, similarly

as for the training loss. Please note that the loss values are

negative due to the negative MS-SSIM loss term. A smaller

loss value means better performance. These results clearly

show the benefits of our proposed techniques on the codec

performance.

4. Conclusions

In this paper, we proposed a learned video codec that

leverages the good performance of learned image prediction

and the successful pipelines of traditional video codecs, by

splitting the processing between a learned intra-frame codec

and a learned inter-frame codec, where the intra-frames ad-

ditionally enhance the prediction of other frames. Further-

more, we proposed to condition the probability model of

the inter-frame codec also on the reference frames. Another

contribution consisted of using only implicit motion infor-

mation within our inter-frame codec. We evaluated our full

model on the CLIC 2021 video dataset. Also, we performed

an ablation study for a selected set of components of our

codec, showing their benefits.



References

[1] International Organization for Standardization, 2021.

ISO/IEC 23090-3:2021 - Information technology Coded

representation of immersive media Part 3: Versatile video

coding. 1
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