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Covered in this talk:

• Yinhao Zhu et al., “Transformer-based Transform Coding”, ICLR 2022

• Hoang Le et al., “MobileCodec: Neural Inter-frame Video Compression on Mobile Devices”, ACM MMSys 2022

Yinhao Zhu Taco Cohen Auke Wiggers

https://openreview.net/forum?id=IDwN6xjHnK8
https://arxiv.org/abs/2207.08338
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At Qualcomm, we are interested in creating efficient neural codecs.

We want neural codecs to be adopted in production-like settings.

If you are working on neural codecs, you should share this interest:
real-world deployment often highlights practical constraints and issues. 
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We believe that adoption will require the codec to…

1. Be efficient: use low-compute transforms and priors

2. Be deployable: run efficiently on-device, not only on desktop GPUs

3. Be performant: outperform existing codecs in metrics that matter



5

We believe that adoption will require the codec to…

1. Be efficient: use low-compute transforms and priors

2. Be deployable: run efficiently on-device, not only on desktop GPUs

3. Be performant: outperform existing codecs in metrics that matter



6

Neural codecs should be efficient

Recent work improves RD performance, but at increasing computational cost.

David Minnen, “Curent Frontiers in Neural Image Compression “,  ICIP 2021 plenary talk.
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7David Minnen, “Curent Frontiers in Neural Image Compression “,  ICIP 2021 plenary talk.

Small disclaimer
• Our SwinT models benchmarked on 2080 Ti, 

runtimes for neural baselines taken from papers
• None of the shown methods have been explicitly 

optimized for runtime

Recent work improves RD performance, but at increasing computational cost.

This is where our work comes in!
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We focus on improving the transform 
We replace strided convolutions by swin-transformer blocks [1] and custom up- and downsampling layers.

[1] Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Performance: Image compression

This improves image compression performance, far outperforming convolutional hyperpriors.

Rate-distortion on Kodak (RGB444)

Rate saving wrt VTM on Kodak

BD rate wrt VTM on various image datasets

Improvement is consistent across datasets, for both factorized and channel-autogressive (ChARM) models.



10[1] Agustsson et al. "Scale-space flow for end-to-end optimized video compression.”, CVPR 2020

Performance: P-frame video compression

Using SwinT based encoder and decoder in flow+residual hyperpriors of a scale-space flow model [1] 
improves video compression performance as well.

Rate-distortion on UVG (RGB444) Rate-distortion on MCL-JCV (RGB444)

BD rate wrt Conv-SSF (reproduced)



11Benchmarked 0.7bpp models on Kodak (512x768) on RTX 2080 Ti GPU, deterministic convolution.

Performance: compute and complexity

Time-to-decode for decoder 𝑔! and GMACs are much lower for SwinT models than for conv.

Peak memory usage does increase due to the (memory-expensive) linear attention operation.
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Small disclaimer
• Our SwinT models benchmarked on 2080Ti, 

runtimes for neural baselines taken from papers
• None of the shown methods have been explicitly 

optimized for runtime

Performance: compute and complexity

Our work improves RD performance at 
much lower computational cost.

BD rate vs decoding time on Kodak
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Yinhao Zhu et al., “Transformer-based Transform Coding”, ICLR 2022

https://openreview.net/forum?id=IDwN6xjHnK8
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In conclusion

Vision transformer-based transforms are an efficient alternative to convolutional ones.

In the paper, we show that…

• Turning a conv-hyperprior into a SwinT-hyperprior is straightforward

• SwinT models far outperform similar-size convolutional ones in image and video compression

• SwinT models are compute-efficient: lower runtime and MACs for same number of parameters

Consider using these in your encoder / decoder.

Yinhao Zhu et al., “Transformer-based Transform Coding”, ICLR 2022

https://openreview.net/forum?id=IDwN6xjHnK8
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We believe that adoption will require the codec to…

1. Be efficient: use low-compute transforms and priors
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3. Be performant: outperform existing codecs in metrics that matter
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Neural codecs should be deployable
We build prototypes and deploy these to mobile devices.

Hoang Le et al., “MobileCodec: Neural Inter-frame Video Compression on Mobile Devices”, ACM MMSys 2022
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https://arxiv.org/abs/2207.08338
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Solution to practical challenges

Developed warping-free
architecture

Parallel Entropy 
Coding (PEC)

Encode

AIMET channel-wise 
quantization-aware training

https://github.com/quic/aimet

AI Model Efficiency 
Toolkit (AIMET)

Decode

High complexity 
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expensive operators
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AIMET is a product of Qualcomm Innovation Center, Inc.
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Perform motion transmission and compensation jointly 
in feature-space, using vanilla 3x3 and 5x5 convolutions. 

Other steps that improved efficiency:

• 3x3 and 5x5 convolutions + ReLU activation throughout
• scale-only hyperpriors
• Gaussian unconditional hyperprior

(FVC [2] and C2F [3] warp in feature space using deformable conv)

Warping-free architecture

Scale-space flow architecture [1] FLow-AGnostic (FLAG) architecture

Analysis transform Correlation estimator Code-to-feature transformationSynthesis transformga gs gc gd
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First transmit motion information, then perform 
pixel-level motion compensation (warping).

ga gs

[1] Agustsson et al. "Scale-space flow for end-to-end optimized video compression.”, CVPR 2020
[2] Lu et al., “FVC: A new framework towards Deep Video Compression in Feature Space”, CVPR 2021
[3] Hu et al., “Course-to-fine Deep Video Coding with Hyperprior-guided Mode Prediction”, CVPR 2022

c Concat
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Step 2: Real-time decoding on a mobile device
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Our on-device codec is competitive with ffmpeg x265 (zerolatency) on UVG.

UVG – bpp vs PSNR (RGB444) UVG – bpp vs MS-SSIM (RGB444)

We provide additional results and runtimes for demo videos in the paper.

Hoang Le et al., “MobileCodec: Neural Inter-frame Video Compression on Mobile Devices”, ACM MMSys 2022

https://arxiv.org/abs/2207.08338
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In conclusion

Neural video codecs can be deployed to device, and decode video in real time.

This requires:

• Replacing of expensive or difficult-to-quantize operators (such as dense warping)

• Careful model quantization

• Fast implementation of on-device entropy coding

We will continue to deploy codecs to device to understand the corresponding challenges.

Hoang Le et al., “MobileCodec: Neural Inter-frame Video Compression on Mobile Devices”, ACM MMSys 2022

https://arxiv.org/abs/2207.08338
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Neural codecs should be performant (measured in metrics that matter)

Neural codec community mostly evaluates RGB444 PSNR and MS-SSIM. We are guilty of this as well.

This may not convince those working with video codecs .. 

• Some favor YUV420 PSNR, which matches human perception more closely than Euclidean RGB

• Some favor learned distortion measures like VMAF

• We’ve also heard ”I only trust my eyes”

For neural codecs to be adopted in realistic settings:

• They need to win in user studies (used in Image and Video compression challenge)

• We need a better metric (Perceptual metric challenge)

• I don’t think they need to win on YUV420 PSNR, but I could be wrong
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We are working towards a neural video codec that is…

1. Efficient: we’re developing codecs with low complexity

2. Deployable: we’re deploying codecs to identify and solve related challenges

3. Performant: in future work, not just RGB444 metrics

Measure compute in your work, as this will help make the case for adoption!
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