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Abstract

Rate-distortion optimization (RDO) is responsible for
large gains in image and video compression. While RDO
is a standard tool in traditional image and video coding,
it is not yet widely used in novel end-to-end trained neu-
ral methods. The major reason is that the decoding func-
tion is trained once and does not have free parameters. In
this paper, we present RDONet, a network containing state-
of-the-art components, which is perceptually optimized and
capable of rate-distortion optimization. With this network,
we are able to outperform VVC Intra on MS-SSIM and two
different perceptual LPIPS metrics. This paper is part of the
CLIC challenge, where we participate under the team name
RDONet_FAU.

1. Introduction

In recent years, neural-network-based image compres-
sion [3, 16, 9] has received wide attention in the research
community. Similar to traditional coding methods, the im-
age is transformed into a latent representation which is then
compressed using certain probability models. In traditional
compression, both the transform (e.g. discrete cosine trans-
form) and the probability model (e.g. lower frequencies
occur more likely) are hand-crafted and empirically deter-
mined. In deep image compression, both transform and
probability model are learned from a large training set and
are typically non-linear. The large success of these methods
shows that traditional concepts can be improved by trans-
ferring them to an end-to-end trainable environment.

Another important concept of traditional image
and video compression is rate-distortion optimization
(RDO) [20]. In many cases the coder has additional
degrees of freedom which influence the coding behavior
locally. That way, an optimal configuration can be found
and transmitted as structured side information. The epitome
of rate-distortion optimization is certainly adaptive block
partitioning as used for example in HEVC [19], VVC [&],
VP9 [17], or AV1 [11]. Even though the possibility of
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Figure 1. Visualization of the latent space coding in different layers
for a 128 x 128 block. Each color represents one level. For u1_3,
a colored component indicates that this hyper-pixel is transmitted.
For better visualization, x and y;1_3 are not to scale.
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locally adapting the coder behavior is a very powerful tool,
it is not yet widely used in learning-based compression.
A reason is that the network structures are usually fixed
after training and do not allow for any local adaptation in
inference.

In this paper, we present RDONet, a state-of-the-art neu-
ral compression network which is capable of rate-distortion
optimization by employing multiple latent spaces. As
shown in Fig. 1, we can thereby transfer block partition-
ing to neural compression. This work is based on two pre-
vious publications [6, 7], where we initially proposed the
RDONet and extended the training. These publications
studied the structure on a relatively simple autoencoder.
In this publication we elevate the structure by combining
it with state-of-the-art components to obtain a competitive
performance. By using a suitable loss function, we also op-
timize our model on perceptual quality.



2. Related Work

The dominating technology for end-to-end trained im-
age compression, the compressive autoencoder, goes back
to a publication by Ballé et al. in 2017 [3] and extends the
standard autoencoder [14] with an entropy bottleneck. This
initial work was later extended by employing a more re-
fined probability modeling using a hyperprior network [5]
and a context model [16]. This way remaining spatial cor-
relation in the latent space could be reduced. In subsequent
research, the structure was extended by employing residual
blocks, attention layers, and parametrized Gaussian mixture
models [9].

Apart from the network structure, research has been per-
formed to find optimal loss functions for the human visual
system, since it is widely known that a mean squared error
is not optimal in this respect. Multiple papers use discrimi-
nator networks in combination with perceptually motivated
metrics like LPIPS [24] as loss functions and are able to
greatly increase the visual quality [21, 15, 12].

Wang et al. also proposed a method to introduce RDO in
neural compression [22]. There, multiple specialized net-
works were trained and the best one is chosen at encod-
ing time. Another possibility was introduced by Schifer et
al., where the transmitted latent space coefficients are op-
timized at encoding time to boost the performance [18] of
the network. Furthermore, they also proposed a fast search
algorithm.

3. RDONet

The basic principle of the rate-distortion optimization is
inspired by adaptive block partitioning in HEVC. There, the
image is split into blocks of different sizes for compres-
sion. As a rule of thumb, areas with stationary content are
compressed with low rate using large blocks, while areas
with fine details are compressed using small block, thus re-
quiring a larger rate. We transfer this concept to neural-
network-based compression by allowing our network to
compress the image at different latent space levels. A com-
pression at a deeper stage of the network is somewhat anal-
ogous to a compression with large blocks in HEVC. In both
cases, a large area is represented jointly, usually with only
few coefficients and only small rate. However, since the
filters used in the decoder have a larger field of view, each
position in the latent space not only corresponds to the re-
spective block of the image but also influences neighboring
areas. This implies that there is considerable redundancy
between the different levels, which is considered by coding
with a conditional hyperprior.

3.1. Network Structure

We split our network in two parts, the backbone fea-
ture analysis and synthesis on the one hand and the vari-
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Figure 2. Architecture of the proposed RDONet. The left side of
the figure shows the encoder components, while the right side
shows the decoder components. Conv c/k/s | denotes a con-
volution layer with ¢ output channels, a kernel size of k X k
and a downsampling factor of s. SP-Conv denotes an analo-
gously parametrized subpixel convolution. Down ResBlock and
Up ResBlock denote a residual block as used in [9] with a down-
sampling and upsampling, respectively. ResBlock is a residual
block which does not change the resolution. The base number
of channels for all components as used in [9] is 192.

able depth compression on the other hand. The former is
responsible for generating a sparse feature representation of
the image and reconstructing the image. The latter is tasked
with compressing the feature on variable depth, enabling
the eponymous RDO.

As backbone for the encoder and decoder, we use the
structure proposed by Cheng et al. [9]. This includes the
use of residual blocks and attention layers. After the fea-
ture generation performed by the encoder network of the
backbone, we proceed by using three latent space units (LS-
Units) as we proposed in [6].

As shown in Fig. 2, we generate the feature represen-
tation u; from the image x using several residual blocks
and attention modules in a configuration as in [9]. Using
downsampling convolution layers, we generate the repre-
sentations us and wus, which are each a factor of 2 smaller
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Figure 3. Structure of the LS-Unit responsible for latent space
transmission. Each LS-Unit contains a Gaussian mixture model
which is parametrized with a context model and a conditional hy-
perprior. Conv and SP-Cony are analoguos to Fig. 2, while MConv
denotes a masked convolution with the same parameters. Filled
circles after a convolution denote GDNs/IGDNs [4] and blank
rhombuses denote leaky ReLUs. Whenever two signals enter the
same convolutional layer, a concatenation along the channels is
performed implicitly. The conditional hyperprior block is the same
as in previous publications [0, 7]. For LS-Unit 1, the convolution
and deconvolution, at the top have a stride of 1 to maintain the
correct downsampling factors.

in each spatial dimension. From these features, we generate
the latent spaces y; inside the LS-Unit as shown in Fig. 3.
We see that u;1 = y; holds here. The three latent spaces
Y1,Y2, and ys are now selectively transmitted. As we visu-
alize in Fig. 1, for each spatial position in the features, we
can choose whether this hyper-pixel is transmitted. Since
we transmit the spatial positions, we can freely control the
behavior externally. The only constraint is that each posi-
tion (taking downsampling into account) is transmitted ex-
actly once. This is done analogously to HEVC, where each
pixel is transmitted with exactly one block size.

In Fig. 3, we see the exact diagram of a latent space
unit. After generating the latent space, we use a convolu-
tional layer to combine it with the previously decoded latent
space from the lower layer. As described above, the latent
spaces have redundancy between them. Using the convolu-
tion layer in the bottom, we can reduce this redundancy by
only passing on information that can not be predicted from
the previous latent space. This behavior develops during
training time and is not enforced. The same deliberation
leads us to the conditional hyperprior. It makes sense to

include the information from the previous level in the con-
text model of the current level. Finally, we also adapt the
structure from [9] combining context model and hyperprior
with a Gaussian mixture model yielding the probabilities
for the arithmetic coder. The structure of the conditional
hyperprior remains the same as in the previous version [7],
except the for dimensions of encoder and decoder which
were taken from [9].

3.2. Training

Since the network has externally controllable parame-
ters, the block partitioning, these parameters have to be
taken into account. For this work, we chose the combi-
nation of two possibilities. In the first training phase, we
start by generating random block partitionings which do
not depend on the content. From one point of view, this
is suboptimal, since inference is performed with optimized
masks, leading to a mismatch between training and infer-
ence. However, this way all layers see a large variety of con-
tent, leading to a more robust training. We then continue the
training using specialized masks, which are estimated with
a variance-based criterion we proposed in [7]. Preliminary
experiments have shown a large advantage of starting the
training with random masks and continuing with estimated
masks.

3.3. Rate Distortion Optimization

After training a rate-distortion optimization has to be
performed. However, an RDO typically consists of testing
multiple possibilities and choosing the optimal one. Espe-
cially with large compression networks, this is rather cum-
bersome. Instead, we use a zero-pass RDO, which entirely
relies on estimated masks. In [7], we showed that the per-
formance of this fast version comes very close to the perfor-
mance of a full RDO and is a suitable compromise between
encoding time and RD performance.

4. Experiments
4.1. Setup

We train our network using a combination of the
CLIC2021 training set, the full DIV2K [1] set, and the TEC-
NICK [2] dataset. We train on image crops of size 512x512
and train for a total of 4750 epochs. In total, we use four
distortion loss functions: MSE, MS-SSIM, LPIPS using a
VGG backbone [24], and a Patch GAN discriminator, as in
[10]. The overall distortion D is a linear combination of
them. The final loss functions is given as

L=XD+R ey

To save time during training, we first trained a full model
using A = 0.02 which we then fine-tuned to three differ-
ent rate points. The rate points where chosen to match the
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400 le-4 0.02 1 0.1 0 0 Rand
1200 | le-5 0.02 1 0.1 0 0 Rand
2000 | le-6 0.02 1 0.1 0 0 Rand
3850 | 3e-5 0.02 1 005 0.015 0.0001 Var
4000 | 3e-6 0.02 1 0.05 0.015 0.0001 Var
0.0045
4600 | 3e-5 < 0.0275 1 005 0.015 0.0001 Var
0.08
0.0045
4750 | 3e-6 < 0.0275 1 005 0.015 0.0001 Var
0.08

Table 1. Schedule for training parameters. We give the learning
rate (Ir), A, the weights of all individual distortion loss functions
and the used mask. The left column states the epoch until which
we use the given set of parameters.

target rates of 0.075, 0.15 and 0.3 bit per pixel. Tab. 1 sum-
marizes the training procedure. Note that we decrease the
learning rate over time and increase it every time we change
other parameters. We use the Adam optimizer with standard
parameters [13].

We perform our tests on the CLIC22 validation dataset.
The set consists of 30 high-resolution images from Un-
splash.

4.2. Results

We first compare RDONet with VVC Intra on objec-
tive metrics. We use the VVEnC implementation in version
1.3.1 [23] on the slower preset, which yields the best perfor-
mance and is on par with the reference implementation. We
compare the results using the PSNR, MS-SSIM, and LPIPS
with two different backbones (AlexNet and VGG). Since
our model was trained on a perceptual loss, we expect a
low performance on the pixel-wise PSNR metric but a good
performance on the other more perceptually motivated met-
rics. Indeed, as we see in Fig. 4, RDONet performs worse
than VVEnC on PSNR. On MS-SSIM, we perform simi-
larly to VVENC, beating VVEnC for small rates but hav-
ing a slightly worse performance for higher rates. On the
LPIPS metrics however, we clearly outperform VVEnC for
the entire range of rates. Note that we perform well both on
the VGG backbone (which was used for training) and the
AlexNet backbone (previously unseen). This shows that the
results are not just a result of overfitting on one metric but
that we actually achieve better objective perceptual quality.

We also want to demonstrate the performance in visual
comparisons. In Fig. 5, we show a 128 x 128 pixel ex-
cerpt of one test image. We clearly see that VVC produces
blurred results for fine details like the plant or the roof-
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Figure 4. Objective quality evaluation comparing RDONet with
VVEnC.
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Figure 5. Visual examples of compressed images

tiles. Our method keeps more details and produces visually
more pleasant results. However, we also see a drawback
of perceptually motivated losses, when we look at the color
artifact in the center. RDONet overemphasizes the color
compared to the original and even spreads it slightly into
the plant. On the other hand, the original orange color is
completely lost in VVC. Without comparison to the orig-
inal however, the RDONet artifact is not strongly noticed
and only slightly disturbs the visual quality.

5. Conclusion

In this paper, we have proposed a new RDONet, which
contains several improvements over the previous versions.
We have incorporated residual blocks and attention lay-
ers and also improved the performance using a Gaussian
mixture model as probability model. We furthermore have
shown that the RDONet structure is suitable for training on
a perceptually motivated loss by combining LPIPS and a
PatchGAN discriminator.

The proposed network outperforms VVC for perceptu-
ally motivated metrics like LPIPS and MS-SSIM. The coder
was entered in the CLIC challenge 2022 with the team name
RDONet_FAU.
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