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Abstract

This paper describes a CNN-based multi-frame post-

processing approach based on a perceptually-inspired Gen-

erative Adversarial Network architecture, CVEGAN. This

method has been integrated with the Versatile Video Cod-

ing Test Model (VTM) 15.2 to enhance the visual quality

of the final reconstructed content. The evaluation results on

the CLIC 2022 validation sequences show consistent coding

gains over the original VVC VTM at the same bitrates when

assessed by PSNR. The integrated codec has been submitted

to the Challenge on Learned Image Compression (CLIC)

2022 (video track), and the team name associated with this

submission is BVI VC.

1. Introduction

Video compression is one of the most important and pop-

ular topics in the image and video processing research field.

It plays an essential role to trade off the tension between the

large amount of bitrate required for transmitting immersive

and high quality video content and the limited bandwidth

available [5]. The efficiency of video codecs have been sig-

nificantly improved over the past few decades, with the lat-

est MPEG video coding standard, Versatile Video Coding

(VVC) [4], achieving nearly 50% coding gains over its pre-

decessor Higher Efficiency Video Coding (HEVC) [12].

More recently, inspired by the advances of machine

learning techniques, in particular with deep convolutional

neural networks, a number of deep learning based video

coding methods have been proposed. Some of these are

designed to offer alternative solutions to the conventional

coding framework using auto-encoder type architectures as-

sociated with end-to-end optimization [1, 7], while another

group of methods focus on the enhancement of individual

coding tools for standard video codecs [14, 15]. All these

method have demonstrated great potential to outperform

conventional hybrid video coding algorithms. On the other

hand, we noted that the aim of video compression is to of-
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fer optimal visual quality with a given bitrate rather than to

minimize the absolute difference between the coded content

and its corresponding original. This concept can be inte-

grated with the deep learning based coding methods using

a perceptually-inspired loss function for training and opti-

mization [10].

In this paper, a deep learning based multi-frame post pro-

cessing approach is presented, which has been submitted

to the Challenge on Learned Image Compression (CLIC)

2022 (video track). This method is based on a previously

developed perceptual-inspired Generative Adversarial Net-

work (GAN) architecture, CVEGAN [9]. It allows multiple

frames (rather than a single frame) as input, which further

improves the overall enhancement performance. This ap-

proach has been integrated with the Versatile Video Coding

Test Model, VTM 15.2, and it achieves consistent coding

gains based on the assessment of PSNR when tested on the

CLIC validation video sequences.

The rest of the paper is organized as follows. Section 2

describes the multi-frame post-processing method, the in-

tegrated coding framework and the training process. The

coding results are then presented in Section 3. Finally, Sec-

tion 4 concludes the paper and outlines the future work.

2. Proposed Algorithm

The coding framework with the multi-frame post-

processing approach is shown in Fig 1. The encoder pro-

cess is identical to that in standard video codecs, and we

use VVC VTM 15.2 [3] as the host encoder. The CNN-

based post-processing is applied at the decoder after the host

decoder reconstructs video frames from the compressed bit-

stream. The employed network architecture for multi-frame

post-processing and its training process are described be-

low.

2.1. Employed Network Architecture

In this work, we used the same generator architecture of

the Generative Adversarial Network for Compressed Video

quality Enhancement (CVEGAN), which was originally de-

veloped for single frame post-processing and spatial resolu-

tion adaptation. CVEGAN has been reported of offer supe-
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Figure 1. The coding framework with a CNN-based multi-frame

post-processing module.

rior coding gains compared to other state-of-the-art network

structures when integrated into various coding modules and

host codecs [9].

The only difference from the original CVEGAN, where

the network processes an input block segmented from a sin-

gle frame, is that a 96×96×9 input patch is accepted by

the generator network in this work. It is obtained by crop-

ping three 96×96×3 YCbCr 4:4:4 blocks from three con-

secutive reconstructed frames (at the same spatial location),

and combining them as a nine channel patch. The network

output is in the same format, targeting their uncompressed

counterpart.

The architecture of the discriminator also remains the

same as the CVEGAN, which takes the output of the gen-

erator and the ground truth patch as the input, and outputs

a set of feature points for calculating the discriminator loss.

More details on the CVEGAN architecture and its training

methodology can be found in [9].

2.2. Training Configuration

We also follow the same training strategy as for the orig-

inal CVEGAN [9], which consists of two stages. First, the

generator is trained using a combined perceptual loss func-

tion to obtain the preliminary model. The used loss function

is given as below.

Lp = 0.3LL1+0.2LSSIM +0.1LL2+0.4LMSSSIM (1)

The generator is then trained jointly with the discriminator

using the ReSphereGAN training methodology [9].

The employed network was implemented based on the

PyTorch platform version 1.10 [11]. The training pro-

cess was performed based on the following configurations:

Adam optimization [6] with the hyper-parameters: β1=0.9

and β2=0.999.; batch size of 16; 200 training epochs (100

for both Stage 1 and 2); initial learning rate (0.0001); weight

decay of 0.1 for every 100 epochs.

2.3. Training Content

The training data was generated from 200 HD source se-

quences in the BVI-DVC [8] database, and 562 videos clips

(with a spatial resolution of 720p) from the YouTube User

Generated Content (UGC) dataset [13]. BVI-DVC has been

used by MPEG JVET as a training database for optimizing

neural network based coding tools of VVC, while YouTube

UGC contains diverse content which has similar character-

istics to the CLIC validation set.

All the original sequences were encoded using VVC

VTM 15.2 Random Access mode with two quantization pa-

rameter (QP) values (32 and 46). These two QP values were

selected to simulate the scenarios for two target bitrates (1

Mbps and 0.1 Mbps) set up by the CLIC 2022. All the com-

pressed sequences and their original counterparts were then

cropped into 96×96×9 patches and randomly selected as

the training material. Rotation and flips were also used for

data augmentation. This results in 80,000 pairs of patches

in total. After training, two CNN models are obtained for

two bitrate scenarios (1 Mbps and 0.1 Mbps).

3. Results and Discussion

To evaluate the performance of the proposed coding

framework, four sequences from the CLIC 2022 validation

set was used here for testing the proposed method (the CLIC

2022 test set was not available when the paper was submit-

ted). Their indices and example frames are shown in Figure

2. During evaluation, these sequences are first encoded us-

ing VVC VTM 15.2 Random Access mode [2] with a QP

value of 46. The bitstreams are then decoded using the VVC

VTM decoder and converted to YCbCr 4:4:4 format. Each

frame together with its temporally previous and subsequent

neighbors are then segmented into 96×96×9 overlapping

patches (96×96×3 from each frame at the same spatial lo-

cation) with a spatial overlap size of 4 pixels as network

input. The middle three channels of generator output patch

(96×96×3) are then converted to RGB format (required by

the CLIC 2022) and aggregated following the same pattern

to form the final reconstructed current frame. In the cases

when processing the first or the last frame of a sequence,

we input 96×96×9 patches cropped from this and two sub-

sequent (or previous) frames, and take the first (or the last)

three channels of the generator output to form the final re-

constructed frame. The training and evaluation operations

were executed on a cluster computer with 32 GPU nodes

with 2.4GHz Intel CPUs and NVIDIA P100 GPUs.

The proposed method is benchmarked against the orig-

inal VVC VTM 15.2, using PSNR for quality assessment.

Table 1 summarizes the performance of the proposed post-

processing method for five different sequences, with an av-

erage PSNR gain of 0.09 dB over the original VTM. Here

the bitrate remains the same for both codecs (VTM and the
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Figure 2. Example frames of the four test sequences.

proposed method) in each test case.

Sequence No S1 S2 S3 S4

PSNR Gain 0.08dB 0.04dB 0.13dB 0.1dB

Table 1. PSNR gains achieved by the proposed method over the

original VVC VTM 15.2.

4. Conclusion

In this paper, we present a CNN-based multi-frame

post processing approach for enhancing the visual qual-

ity of compression content. This method is based on the

perceptual-inspired CVEGAN, and has been integrated with

the Versatile Video Coding Test Model (VTM) 15.2 as a

submission (BVI VC) to the Challenge on Learned Image

Compression (CLIC) 2022 (video track). This approach has

been evaluated on the CLIC 2022 validate sequences, and

the results show consistent coding gains based on the as-

sessment of PSNR. Future work should focus on the com-

plexity reduction of the employed network architecture and

more advanced structures for multi-frame processing.
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