
Supplementary Material

A. Reference Quantization by Rounding (INT)

As reference, we use integer-rounding-based (INT)
quantization as, e.g., in [5, 6, 27], being depicted in Fig-
ure A.1, where during inference the input data is simply
rounded to the nearest integer value element-wise. During
training, however, no quantization is applied but the quan-
tization error is simulated by addition of random uniform
noise n ∼ U

(
− 1

2 ,
1
2

)
. To allow fair comparison, the same

encoder and decoder architectures are applied both for INT
and Ω quantization.

As for Ω quantization, also for INT quantization the av-
erage bitrate is determined by the entropy model described
in Section B, as is done by [5]. Further, we again control
the average bitrate with our proposed feature map masking
function M() varying the number of feature maps in the
bottleneck to perform rate adaptation during inference. The
bitrate calculation from Section 3.3 remains applicable, but
the mean cross entropy (MCE) receives only P (r̂′) as sin-
gle input and is now (instead of (8))

MCE(r̂′,P ) = −
∑

i∈I

log2(Pi)

HX ·WX
, (A.1)

with the probability estimate P = (Pi) ∈ [0, 1]HR×WR×CR ,
i ∈ I = {1, ...,HR ·WR ·CR} and

Pi =

∫ r̂′i+
1
2

r̂′i− 1
2

p(x) dx (A.2)

= F (r̂′i +
1
2 )− F (r̂′i − 1

2 ) (A.3)

integrating over the univariate probability density function
(PDF) p(x), resulting in a difference of cumulative distri-
bution functions (CDFs) F (). Only the non-masked fea-
ture maps count into the bitrate calculation. While in the
Ω quantizer, the quantized feature map pixels ẑi and ẑ′

i are
S-dimensional and therefore require a multivariate entropy
model, in the INT reference r̂i and r̂′i are scalar and em-
ployed in the integration limits over the univariate p(x).

B. Entropy Models

Since the bottleneck representations are different for Ω
and INT quantizers, also the entropy models with their in-
puts and outputs differ to allow optimal interaction with the
quantizers.

Entropy Model for the One-Hot Max Quantizer. The
entropy model used for Ω quantization can be seen in Fig-
ure B.1. We use a convolutional neural network (CNN) with
an input tensor 1 ∈ {1}HR×WR×1 consisting of ones with
resolution HR × WR to generate an intermediate output
having the same dimensions as r̂. The subsequent probabil-

Rounding
M

r r̂′

r̂ q

Integer Rounding (INT)
Quantizer

HR×WR×CR HR×WR×CR

n ∼ U
(
− 1

2 ,
1
2

)

inference

training

Figure A.1. Integer-rounding-based (INT) quantizer as being
used in Figure 2 as reference approach (replacing the Ω quan-
tizer) with the residual r as input and the masked quantized resid-
ual r̂′ as output. During inference, the bottleneck feature map
data r = (ri) is rounded element-wise (ri) to the nearest integer
r̂i, while during training, the quantization error is simulated by
uniform noise n ∼ U

(
− 1

2
, 1
2

)
.

ity (Prob) layer is similar to the first part of the Ω quantizer:
First, the number of feature maps CR is adjusted to C ′ by
a 1×1 convolution, second, the last dimension is split into
CZ bottleneck feature maps and the quantizer dimension S,
and third, the representation is scaled with the learnable pa-
rameter ξ to adjust the hardness of the softmax output, and
processed by the softmax function to obtain values in the in-
terval [0, 1] which add up to 1 over the quantizer dimension.
The output of the entropy model has the same dimensional-
ity as ẑ and yields the probability of the occurrence of a 1
in ẑ for each feature map pixel and quantizer dimension.

Entropy Model for the Integer Rounding Quantizer.
The univariate entropy model for the INT quantization is
adopted from [6] and can be seen in Figure B.2. Here,
the probability estimate is advantageously obtained from
the difference of the cumulative distribution functions F ()
(CDFs) at the decision boundaries, which always lie at
r̂′i ± 1

2 for the INT quantizer. The quantized bottleneck rep-
resentation r̂′ is used as input of the entropy model, result-
ing in P = P (r̂′). With the flattened feature map pixels
x ∈ RHR·WR from one feature map, each filter of the CDF
uses the filter function

f(x) = g(softplus(H)xT +B) (B.1)

with the function softplus(h) = ln(1 + eh) — also called
smooth rectifier unit, guaranteeing positive outputs — being
applied element-wise and the columns of the matrix B =
(Bk,ℓ) = (b) consisting of equal parameter vectors b =
(bk). Here,

g(y) = y + tanh(A)⊙ tanh(y) (B.2)

is the activation function, where ⊙ is the element-wise mul-
tiplication, the columns a = (ak) of the matrix A =



Softmax

1x1 Conv

CNN

Reshape

1

P

ξP
ro
b
L
ay
er

HR×WR×CR

HR×WR×1

HR×WR×C′

HR×WR×CZ×S

HR×WR×CZ×S

Ω
E
n
tr
op
y
M
o
d
el

Figure B.1. Ω quantization entropy model being embedded in
Figure 2. For each pixel in the quantized bottleneck representation
ẑ′ = (ẑ′i,s), the entropy model provides the probability Pi,s of
ẑ′i,s being 1, in total P = (Pi,s).

(Ak,ℓ) = (a) consisting of equal parameter vectors, and all
operations are performed for each feature map separately.
The CDF is completed by a sigmoid activation function.
The parameter matrix H and parameter vectors a, b have
different dimensionalities for the individual filters, such that
the data dimensions noted in Figure B.2 result, e.g., for the
first filter f(x) we have H ∈ R3×1, a, b ∈ R3,A,B ∈
R3×HR·WR . For each feature map, an individual set of the
parameters H , a, b exists, having same dimensionality and
being optimized separately during training. For the second
and third filters f(), we have H ∈ R3×3 and a, b ∈ R3

within A,B ∈ R3×HR·WR . For the last filter f(), we have
H ∈ R1×3 and a, b ∈ R within A,B ∈ R1×HR·WR .

Practical Advantage of Ω Quantization Entropy
Model. With the presented entropy model architecture for
Ω quantization based on convolutional layers, given a fixed
input image size HX ×WX , — as could be the case, e.g.,
when processing sensor data — the discrete prior probabil-
ity P of the Ω quantization entropy model is constant since
the input of the entropy model is a constant tensor of ones.
Hence, in an application with known fixed input image size,
the entropy model output can be pre-stored and read out
of memory during inference to save computation resources
and storage for the weights of the entropy model (in case
the weights require more memory than the prior probability,
which depends on the image size). For the INT quantiza-
tion entropy model, in contrast, pre-storing the probabilities
P (r̂′) is not possible since they depend on the input and
have to be computed during inference.

Reshape Reshape

Reshape Reshape

Sigmoid Sigmoid

Filter f()

Filter f()

Filter f()

Filter f()

Filter f()

Filter f()

Filter f()

Filter f()

r̂′

P (r̂′)

−

−

1
2

1
2

IN
T

E
n
tr
op
y
M
o
d
el

C
D
F

C
D
F

F (r̂′i+
1
2
) F (r̂′i+

1
2
)

HR×WR×CR

HR×WR×CR

3×HR ·WR×CR

3×HR ·WR×CR

3×HR ·WR×CR

HR ·WR×CR

HR ·WR×CR

HR ·WR×CR

Figure B.2. INT quantization entropy model from [6] being em-
bedded in Figure 2 for the reference approach. For each pixel
in the quantized bottleneck representation r̂′ = (r̂′i) the entropy
model provides the probability Pi of r̂′i, in total P (r̂′) = (Pi) by
learning a cumulative distribution function (CDF).

C. Datasets and Hyperparameters

MNIST. We use the MNIST data set [20] with small net-
work architectures allowing for a multitude of experimental
results and train for a maximum of 1,000 epochs in this set-
ting — depending on early stopping — with a batch size of
512.

Kodak. We also use the OpenImages data set [19] both
for training and validation as in [26, 27], where preprocess-
ing follows [26], and follow conventions by testing on the
Kodak dataset [10]. Here, we train for a maximum of 10
epochs with a batch size of 32 and a crop size of 256. We
pad images with arbitrary given resolutions since input im-
ages should have a resolution being dividable by the overall
downsampling factor due to downsampling by strided con-
volutions.

Further Hyperparameters. During training, we set
the learning rate of the Adam optimizer [18] to 10−3 for
MNIST and to 10−4 for OpenImages, in both cases with a
weight decay of 10−5. The hyperparameter β controlling
the hardness of the one-hot max approximation is 100. We
did not optimize the seed.



Table D.1. Model parameters and number of operations for Ω
and INT quantization for the MNIST architecture. Bold values
are from the settings being used. For INT quantization, CZ corre-
sponds to CR.

CZ S
Parameters MACs in millions
Ω INT Ω INT

8

2 16,913

15,913

1,066

1,063

4 18,481 1,075
8 21,617 1,091

16 27,889 1,123
32 40,433 1,188

256 216,049 2,096

16

2 18,489

16,809

1,074

1,068

4 21,625 1,091
8 27,897 1,123

16 40,441 1,188
32 65,529 1,318

256 416,761 3,134

32

2 21,641

18,601

1,090

1,080

4 27,913 1,123
8 40,457 1,188

16 65,545 1,317
32 115,721 1,577

256 818,185 5,210

D. Model Architectures
For MNIST and Kodak, we use different model architec-

tures varying in complexity. We use the notations from [34]
and [38] to describe our networks.

MNIST Architectures. Let c3s1-k denote a 3× 3
convolution-ReLU layer and t3s1-k a 3× 3 transposed
convolution-ReLU layer both with stride 1 and k output
feature maps. The encoder can be described as follows:
c3s3-16, c3s2-16, c3s2-CR with CR = 32 if not
stated otherwise. The decoder architecture is t3s2-16,
t5s2-8, t2s2-1 with final tanh activation. The convo-
lutional neural network for the entropy model applied with
the Ω quantizer consists of a single c3s1-CR layer. For
the subsequent probability layer and the entropy model ar-
chitecture for the INT quantizer please see Section B.

Kodak (Full-Scale) Architectures. Here, C3s1-k and
T3s1-k denote a 3×3 convolution-ChannelNorm-ReLU
layer and a 3× 3 transposed convolution-ChannelNorm-
ReLU layer, respectively, both with stride 1 and k output
feature maps. We further define a downsampling layer d-k
to be C3s2-k, an upsampling layer u-k to be T3s2-k
with output padding of 1 in all directions, and a ResNet
block [15] R-k with ChannelNorm. The encoder is then
C7s1-60, d-120, d-240, d-480, d-CR with CR =
960 if not stated otherwise. The decoder is described as 8 ×
R-CR, u-480, u-240, u-120, u-60, c7s1-3 without

Table D.2. Model parameters and number of operations for Ω
and INT quantization for the Kodak architecture. Bold values
are from the settings being used. For INT quantization, CZ corre-
sponds to CR.

CZ S
Parameters in millions MACs in 109

Ω INT Ω INT

480

2 150.7

149.4

1,861

1,812

4 153.5 1,884
8 159.0 1,929
16 170.1 2,020
32 192.3 2,202
64 236.6 2,566

960

2 153.5

150.8

1,884

1,820

4 159.0 1,929
8 170.1 2,020
16 192.3 2,202
32 236.6 2,566
64 325.2 3,293

final normalization and activation. Finally, the CNN for the
entropy model for Ω quantization consists of C3s1-480,
C3s1-CR, while the INT quantizer again uses the entropy
model described in Section B.

E. Number of Parameters and Complexity

Parameters. As the Ω quantizer transforms the in-
put into the feature map dimension CZ and the quantizer
dimension S, the number of parameters is naturally larger
than for the INT quantizer, since the INT quantizer does not
change the dimensions internally. Tables D.1 and D.2 show
the parameters of the models with Ω and INT quantization
for the MNIST and Kodak architectures, respectively. In
contrast to the Ω architectures, the quantizer dimension S
has no effect on the number of parameters of the INT quan-
tizer and entropy models. As can be seen from the tables,
the Ω quantizer autoencoder in general uses more parame-
ters than the INT quantizer autoencoder. Considering that
the INT quantizer essentially merely rounds values to the
nearest integer value and does not require parameters for
this, this is not surprising. While in Table D.1 it can be seen
that differences are substantial for the playground MNIST
architecture (although still all networks are below 1 M pa-
rameters), Table D.2 shows for the practically more rele-
vant Kodak dataset that the autoencoder with Ω quantizer
(192.3 M) consumes “only” about 28% more parameters
than the one with INT quantizer (150.8 M). The encoder
and decoder have 7,120 and 7,865 parameters, respectively,
for the MNIST architecture such that the number of parame-
ters is evenly portioned, and 5,522,400 and 138,276,003 pa-
rameters, respectively, for the Kodak architecture, showing
the Kodak architecture is much more unevenly distributed



mainly due to the ResNet blocks in the decoder.
Computational Complexity. Tables D.1 and D.2 show

the number of operations for the MNIST and Kodak archi-
tectures, respectively, as numbers of multiply-accumulate
(MAC) operations. We find that the Ω quantizer in gen-
eral requires more operations than the INT quantizer as it is
more complex mainly due to the 1×1 convolution. Again,
while in Table D.1 it can be seen that the differences are sub-
stantial for the playground MNIST architecture (although
at only about 1,000 ... 5,000 M operations per image),
Table D.2 shows for the practically more relevant Kodak
dataset that the Ω quantizer autoencoder (2,202 GMACs)
has to be compared to the INT quantizer autoencoder (1,820
GMACs), which is “only” an about 22% higher computa-
tional complexity for the Ω quantizer autoencoder. For the
MNIST architecture, the encoder and decoder require 59.3
and 997.6 MMACs, respectively, while the imbalance re-
sults from the larger kernel size in the second decoder layer
(see Section D), and for the Kodak architecture, encoder
and decoder require 154.6 and 1,649.6 GMACs, respec-
tively, also showing a more complex decoder again due to
the ResNet blocks in the decoder.


