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Abstract

We propose a generic approach to quantization with-
out codebook in learned image compression called one-
hot max (OHM, Ω) quantization. It reorganizes the fea-
ture space resulting in an additional dimension, along
which vector quantization yields one-hot vectors by com-
paring activations. Furthermore, we show how to inte-
grate Ω quantization into a compression system with bi-
trate adaptation, i.e., full control over bitrate during in-
ference. We perform experiments on both MNIST and
Kodak and report on rate-distortion trade-offs compar-
ing with the integer rounding reference. For low bi-
trates (< 0.4 bpp), our proposed quantizer yields bet-
ter performance while exhibiting also other advantageous
training and inference properties. Code is available at
https://github.com/ifnspaml/OHMQ.

1. Introduction

In learned image compression, autoencoders combined
with quantizers and entropy models serve as the central
building blocks [16]. The bitrate depends on the rate-
distortion (RD) trade-off [28], typically being imprinted
during training by the RD loss. While improvements have
been achieved in the architectures of encoders, decoders,
entropy models, and also loss functions, for quantization
naive techniques are still widely applied.

A simple quantization approach is to round each bottle-
neck data point towards the next integer value element-wise
— a special form of scalar quantization with a non-learned,
uniform codebook. In the backward pass, the quantization
error is simulated by additive uniformly distributed noise
[5, 27]. Hence, during training, the autoencoder does not
really adjust to the quantizer but merely learns to be error-
tolerant.

To improve quantization, we propose a novel quantizer
architecture depicted in Figure 1. Our proposed one-hot
max (Ω) quantizer operates on reorganized input data with
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ẑ′

z=(zi)

−β

forward

backward

One-Hot Max (Ω)
Quantizer

HR×WR×CR HR×WR×CR

HR×WR×C′

HR×WR×CZ×S

HR×WR×C′

HR×WR×CZ×S

Figure 1. One-hot max (Ω) quantizer with one-hot output vec-
tors ẑ′ obtained by the one-hot max function. In the backward
pass, the quantization is approximated by the differentiable soft-
max function. For learned image compression, the quantizer is
embedded in a compression architecture as shown in Figure 2.

an additional dimension, and performs one-hot max vector
quantization along this additional dimension. During back-
propagation training, we approximate our Ω quantizer using
the softmax function, following [1]. In contrast to other
works on vector quantization [1, 14], our proposed Ω quan-
tizer does not require an explicit codebook and enables flex-
ible bitrate adaptation during inference with a single trained
model, i.e., one can manually specify the desired operating
point on the RD curve at any point in time.

Our contributions are as follows: First, we propose the
one-hot max (Ω) quantizer which does not rely on a code-
book. Second, we propose a bitrate adaptation mechanism
based on feature map masking with a special sampling pro-
tocol during training. This enables image compression at
various bitrates with a single trained model. Third, we show
a generic learned image compression system including en-
coder, decoder, entropy model, and our proposed Ω quanti-
zation. Fourth, we compare our proposed quantizer with an
integer-rounding-based reference on MNIST and Kodak.



2. Related Work
In learned image compression, quantization, being dis-

cretization of continuous values [11–13, 29], is applied to
neural network activations to yield compact data repre-
sentations [5, 32]. Scalar quantization — e.g., by round-
ing to the nearest integer [2, 6, 27] — and vector quan-
tization [1, 12, 22, 24, 35] rival in terms of low complex-
ity and low distortion. Both variants make use of explicit
codebooks [12, 22, 24, 35]. More recent methods jointly
optimize networks and codebooks such as VQ-VAE [33],
where straight-through estimation (STE) [7] provides gra-
dients to the encoder. Also, applying a softmax-based es-
timation with temperature has emerged [1, 14, 35, 37]. In
this work, we adopt the softmax approximation, while in
contrast to [1,14], our method does not require a codebook.
In our experimental evaluation, we compare our proposed
Ω quantization to integer-rounding-based (INT) quantiza-
tion as is used, e.g., in [2, 6, 27]. Note that this work does
not aim at some benchmark absolute compression system
performance, rather it concentrates on quantizer schemes.
In consequence, we embed our proposed Ω quantizer in a
fairly simple autoencoder, being adopted from [27].

Concerning adaptive compression, two types of dynamic
bit allocation are often applied. First, many approaches
allow spatially, content-aware bit allocation [17, 25], e.g.,
with a region of interest (ROI) [3, 23, 30] or importance
map [25]. Second, rate adaptation is performed to adjust
the bitrate during inference with a single trained model
and move the operating point along the rate-distortion (RD)
curve [8, 9, 21, 30, 36]. The rate adaptation approach used
in this paper follows the latter option, with closest prior
art [21], where an importance map with a feature map mask-
ing mechanism and a learned mask for content-aware bit
allocation are used. However, our rate adaptation goes be-
yond [21], as it uses a masking mechanism to flexibly con-
trol the bitrate during inference with a single trained model.

3. Method
In this section, we will first introduce our proposed one-

hot max (Ω) quantizer, then explain the bitrate adaptation
mechanism, and finally show how it is embedded into the
image compression system.

3.1. One-Hot Max (Ω) Quantization

Figure 1 shows how the residual r is reorganized by con-
volution with a 1×1 kernel, yielding C ′ feature maps. A sub-
sequent reshaping splits the last dimension (size C ′) into a
CZ -sized feature map dimension and a S-sized vectorial Ω
quantizer input dimension, fulfilling C ′ = CZ ·S. Next, the
representation is rectified and multiplied by −β < 0, where
β is a learnable parameter to control the hardness of the
backward approximation. Thereby, one obtains z = (zi) ∈

RHR×WR×CZ×S , with zi = (zi,s) ∈ RS being the feature
map pixels with index i ∈ I = {1, ...,HR ·WR ·CZ}. We
observed that enforcing zi,s ≤ 0, following [1], yields slight
performance advantages. Quantization is performed by our
proposed vectorial one-hot max (Ω) quantization function

ẑi = Ω(zi), (1)

with ẑi = (ẑi,s) and

ẑi,s =

{
1 for s = argmax(zi),

0 else,
(2)

taking the argmax over the elements zi,s of the input vector
zi, with quantizer dimension index s ∈ S = {1, ..., S}. To
yield a differentiable function for the backward pass, we use
the approximation

z̃i = softmax(zi), with z̃i = (z̃i,s), (3)

thereby following [1, 14]. Finally, the quantized residual is
reshaped back into its original size and again convolved to
yield the quantizer output r̂.

Note that using convolutional layers to create and col-
lapse the quantizer dimension S before and after the quan-
tizer cannot be transformed into a lookup table operation
as with a codebook. With a classical codebook, first, the
distance between activation and codebook entries would be
computed and second, the nearest codebook entry from the
same codebook replaces the activation [1]. In our case,
the two layers are decoupled and different in general. The
Ω quantizer actually can be interpreted as a vector quan-
tizer with one-hot codebook vectors in a higher-dimensional
space (no need to store as codebook).

3.2. Rate Adaptation

To adapt the bitrate during inference, the number of
feature maps in the bottleneck is dynamically varied in
the range [Cmin, CZ ] by masking the quantized represen-
tation ẑ. Here, we consider the one-hot quantized data as
ẑ = (ẑ(c))∈ {0, 1}HR×WR×CZ×S , ẑ(c) ∈ {0, 1}HR×WR×S

with feature map (FM) index c ∈ {1, ..., CZ}. The masked
quantizer output is

ẑ′ = (ẑ′(c)) = M(ẑ), (4)

where the masking function M() is obtained by

ẑ′(c) =

{
ẑ(c) for c ≤ ⌈Cmin + q · (CZ − Cmin)⌉,
0 else,

(5)

employing the quality hyperparameter q ∈ [0, 1].
During training, the quality hyperparameter q is sampled

from a probability density function pQ(). Thus, we indi-
rectly train with adaptive bitrate conditions where q can take
on arbitrary values. Due to the nature of this sampling pro-
cess, feature maps with low indices are trained more fre-
quently than those with high indices (high-indexed feature
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Figure 2. Training configuration for learned image compres-
sion with one-hot max (Ω) quantization: Autoencoder training
with Ω quantizer (details in Figure 1) and entropy model by distor-
tion and rate loss. The reference approach replaces the Ω quantizer
by the standard rounding-based (INT) quantizer.

maps are only trained for high q values, while low-indexed
feature maps are trained for both low and high q values). To
combat this imbalance at least to some extent, we concen-
trate the probability density function pQ() on higher values
of q, by sampling

q ∼ pQ(q) =

{
2q for 0 ≤ q ≤ 1,

0 else,
(6)

see also [31]. During inference, q is no longer sampled but
freely chosen to control the rate-distortion trade-off.

3.3. Compression Architecture

Figure 2 shows the embedding of our proposed Ω quan-
tizer into an autoencoder architecture with an entropy
model estimating the bottleneck distribution (training). The
integer-rounding-based (INT) reference quantizer is ex-
plained in Section A in the supplementary material. With
the input image x ∈ [0, 1]HX×WX×CX and output image
x̂ ∈ [0, 1]HX×WX×CX , both of height HX , width WX , and
CX = 3 color channels, the distortion loss

Jdist = MSE(x, x̂) =
∥x− x̂∥22

HX ·WX · CX
(7)

minimizes the mean squared error (MSE) during training.
The entropy model predicts the prior probability for the

occurrence of each of the S possible one-hot vectors in
each feature map pixel of ẑ. We use an entropy model
based on convolutional layers such that a constant tensor
1 ∈ {1}HR×WR×1 filled with ones, having a height and
width dimension equal to the residual, generates distribu-
tions for arbitrary image sizes. A softmax activation re-
stricts the output P = (Pi,s) ∈ [0, 1]HR×WR×CZ×S to the
interval Pi,s ∈ [0, 1] with

∑
s∈S Pi,s = 1, see Section B in

the supplementary material for details.
The entropy model minimizes the bitrate, simultaneously

being the rate loss

J rate = MCE(ẑ′,P ) = −
∑

i∈I

∑

s∈S

ẑ′i,s · log2(Pi,s)

HX ·WX
, (8)

realized as the mean cross entropy (MCE) between the

masked quantized residual pixels ẑ′
i ∈ {0, 1}S and the es-

timated probability distribution P . Accordingly, the accu-
mulation over s in (8) is done effectively only over the non-
masked feature maps. Hence, in combination with (7), we
obtain the rate-distortion trade-off being controlled by the
hyperparameter λ ∈]0, 1[ in the rate-distortion (RD) loss

J = λ · Jdist + (1− λ) · J rate, (9)

whereby the RD trade-off is determined by

λ = λmin + q · (λmax − λmin), (10)

ranging between a minimum and maximum rate-distortion
weight λmin and λmax, respectively, depending on q.

The model is trained by the rate-distortion loss (9) with
masked quantizer output ẑ′ (4) as input to the decoder and
adapted λ (10), where q is sampled randomly from pQ() (6).

4. Evaluation

4.1. Experimental Setup

To prove transferability, we conduct experiments on
MNIST [20] and Kodak [10], while training on MNIST
(separate training split) and OpenImages [19], respectively.
Details on the datasets and training hyperparameters can be
found in Section C in the supplementary material. As our
goal is to evaluate our novel Ω quantizer rather than using
the latest state-of-the-art autoencoder, we defined network
architectures allowing easy comparison described in Sec-
tion D in the supplementary material. Using advanced and
more complex network architectures, e.g., a hyperprior ar-
chitecture [6], the absolute compression performance would
be expected higher for all investigated methods. We report
on the peak signal-to-noise ratio (PSNR).

4.2. Experiments on MNIST

Figure 3(a) shows RD curves for the Ω quantizer on
the MNIST validation set with CZ = 16 FMs and var-
ious configurations for Cmin ∈ {0, 8} and intervals of
λ ∈ {[0.95, 0.9999], [0.9, 0.9999], [0.85, 0.9]}. Each set-
ting results in a smooth RD curve, which we trace to a well
structured bottleneck representation, being ordered by im-
portance. Due to the lightweight network architectures we
used, PSNR values range up to 22 dB (24 dB on test set).
For λ ∈ [0.95, 0.9999] and Cmin = 0, good PSNR val-
ues at low and high bitrates can be obtained, while choos-
ing Cmin = 8 achieves slightly better trade-offs only in the
higher bitrate regime. For λ ∈ [0.85, 0.9], lower bitrates and
best RD trade-offs in the low-bitrate regime are observed.
However, bitrate adaptation schemes should aim at a wide
range of good RD trade-offs. The lower Cmin or the larger
the λ interval, the larger the resulting bitrate range. The
average value of λ further influences the trade-off to focus
on specific bitrate regimes. In the following, we choose
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Figure 3. MNIST RD curves. The average bitrate depends
on the number of channels controlled by q during inference.
(a) Ω quantizer with S = 256 and various choices of Cmin and
λ on the validation set. (b) Ω and INT quantizers with Cmin = 0,
λ ∈ [0.95, 0.9999], S = 256 (for Ω quantization) on the test set.

Cmin = 0 with λ ∈ [0.95, 0.9999] to cover a wide bitrate
range.

Figure 3(b) compares Ω and integer-rounding-based
(INT) quantization for CZ , CR ∈ {8, 16, 32} feature maps,
respectively, on the MNIST test set. The proposed Ω quan-
tizer clearly outperforms the INT quantizer in the entire low
bitrate regime (< 0.4 bpp) — and still performs a bit better
at high bitrates — for each feature map configuration. Inter-
estingly, CZ has no strong influence on the RD curve for the
Ω quantizer as could have been expected. The largely over-
lapping curves show the robust well-behaving properties of
the Ω quantizer. In contrast, the INT quantizer behaves less
predictable and stable which can be seen at the RD curve
for 8 FMs exceeding the RD curves of 16 and 32 FMs.

4.3. Experiments on Kodak

For the evaluation on Kodak, shown in Figure 4, we use
S = 32 (for Ω quantization), Cmin = 0, and an RD trade-off
parameter λ ∈ [0.95, 0.9999] during training. Again, PSNR
values range up to 31 dB as we use simple architectures.
Ω quantization again excels INT quantization in PSNR at
low bitrates, while INT quantization is better at high bi-
trates above about 0.4 bpp. With decreasing bitrate, the INT
quantizer significantly drops at 0.18 bpp from about 25 dB
to below 22.5 dB in PSNR, while the Ω quantizer in the
same bitrate range stays at a PSNR > 24 dB until reaching
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Figure 4. Kodak RD curves. Models are trained on OpenImages
[19] and tested on Kodak [10]. The average bitrate depends on q
as chosen during inference.

0.1 bpp. We conclude that Ω quantization is better suited
for the highly relevant low bitrate regime.

4.4. Final Discussion

Even though a model with rate adaptation of course does
not reach the performance of multiple models each specif-
ically trained for a dedicated RD trade-off, e.g., [4, 6, 27],
the rate adaptation mechanism still has essential advantages
in training and inference, e.g., faster training and inference
and better comparability to compression standards which
also frequently provide rate adaptation. Due to the mask-
ing being applied after encoding and quantization, the Ω
quantizer can adjust to temporary bandwidth/bitrate short-
ages on the transmission channel on the fly — simply by
removing feature maps at any point in the transmission net-
work. Note that we do not compare our approach in abso-
lute terms to prior works since we use less complex archi-
tectures, so lower PSNR is expected.

5. Conclusions
In this work, we proposed a learnable vector quantization

approach called one-hot max (OHM, Ω) quantizer without
codebook and showed how to use it in learned image com-
pression with adaptive bitrate. We compare our Ω quantizer
with integer-rounding-based (INT) quantization on MNIST
and the conventional Kodak dataset. Our proposed Ω quan-
tizer excels the baseline at all bitrates on MNIST and at low
bitrates (< 0.4 bpp) on Kodak. Furthermore, it shows better
generalizability and predictability for different bottleneck
sizes and bitrates. Looking forward, by its rate adaptation
mechanism, the Ω quantizer is perfectly suited for media
transmission with flexible options to reduce the bitrate at
any point during transmission.
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