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Abstract

In this paper, we introduce our hybrid image and video
compression scheme enhanced by CNN-optimized in-loop
filter. Specifically, a Structure Preserving in-Loop Filter
(SPiLF) is incorporated in the hybrid video codec En-
hanced Compression Model (ECM), where two branches,
i.e., gradient branch and pixel branch, are developed based
on the dense residual unit (DRU). To provide pleasant vi-
sual quality, the Generative adversarial networks (GAN)
loss and LPIPS loss are further considered. Therefore, the
proposal is mainly focusing on perceptual-friendly image
compression for human vision, whilst video compression
could be further investigated. The experiments show that
the proposed method achieves advanced visual quality when
compared to the traditional methods.

1. Introduction

Nowadays, the explosive growth of multimedia data
poses a huge challenge for storage and transmission. There
are many image/video compression algorithms that have
been developed, e.g. JPEG, JPEG2000, BPG (based on
H.265/HEVC intra coding), and AV1. The latest video cod-
ing standard Versatile Video Coding (VVC) has been fin-
ished in July 2020. It aims at yet another 50% bit-rate re-
duction compared to H.265/HEVC, and provides a range
of additional functionalities [3]. Although the block-based
prediction and quantization in VVC are indeed effective,
flexible, and popular, there are some consequences in the re-
constructed frames using these methods, known as blocking
artifacts. The visual quality of reconstructed frames can be
severely damaged due to the discontinuities at the edges be-
tween blocks. To eliminate the artifacts, some conventional
tools are added to the in-loop filter to alleviate visual dis-
comfort without adding too many bits, including deblocking
filter (DBF), Sample Adaptive Offset (SAO), and Adaptive
Loop Filter (ALF), which are implemented sequentially in
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VVC. However, under the circumstances of low bit-rate, the
decoded videos still suffer from noticeable compression ar-
tifacts. Moreover, the optimization distortion of the hybrid
video codec is mean square error (MSE), which may cause a
mismatch between the subjective and objective perceptions.
With the development of the deep neural network, learning
based image/video compression has drawn more attention.
Convolutional Neural Networks (CNN) based in-loop filter
has been investigated and demonstrated its advantage to im-
prove perceptual quality further.

In this paper, we propose a perceptual-oriented structure-
preserving in-loop filter (SPiLF) method for image/video
compression. The network of SPiLF consists of two
branches, one is the Gradient branch (GB) for enhancing
the information in high frequency than the conventional net-
works [6] and the other one is a conventional pixel branch
that restores the reconstructed frames with the enhanced
feature map of gradient map. Besides, the Generative ad-
versarial networks (GAN) [7] loss and LPIPS [9] loss are
further considered to improve subjective visual quality. The
experimental results demonstrate the superior performance
of the proposed method.

2. Proposed Method
In the proposed method, we develop our codec based

on the Enhanced Compression Model (ECM) platform [1],
which is developed based on Versatile Video Coding Test
Model (VTM). The SPiLF is integrated into ECM to en-
hance the coding efficiency. The proposed framework is
shown in Figure 1.

2.1. Structure Preserving in-Loop Filter

The overall framework is shown in Figure 1 where the
proposed SPiLF consists of two branches. One is a con-
ventional compression artifact removal branch in the pixel
domain, and the other is a gradient branch. The decoded
frames are taken as inputs for both branches, and the recov-
ered frames are generated with the guidance provided by
the gradient branch, which aims to produce gradient maps
as similar as possible to their uncompressed counterparts.



Figure 1. The scheme of the Perceptual in-Loop Filter enhanced image and video compression method and the detailed architecture of our
proposed SPiLF.

2.1.1 Gradient Branch

The gradient branch is proposed to generate better gradi-
ent maps with compressed textures and provide professional
guidance to the pixel branch in restoring the decoded frames
as well. A function for extracting the gradient maps of
frames denoted as G(·), is designed as follows:

G(fx,y) =
√
(fx−1,y − fx+1,y)2 + (fx,y−1 − fx,y+1)2

where fx,y denotes a pixel located at (x, y) in a frame. The
gradient maps obtained from decoded frames are fed into
a residual network, which consists of multiple grad blocks
and squeeze-and-excitation block (SE block) [4]. In our
approach, the dense residual unit (DRU) [8] is adopted to
reproduce the lost textures in decoded grad. Before out-
putting the reconstructed gradient maps, the feature maps
of restored gradients are incorporated into the pixel branch.

2.1.2 Pixel Branch

As for the pixel branch, the network is designed on the
basis of structure preserving and artifacts removing archi-
tecture, which mainly consists of two parts. The first part
is a sequential residual structure with multiple pixel units
that could be replaced by any basic neural architecture. We
adopt DRU as the pixel unit, in consideration of its supe-
rior performance in denoising tasks. Every pixel unit is fol-
lowed with a SE block to enhance the output feature maps,
which assign greater weight automatically to channels that
are more important in the output feature maps. The second
part uses the output features from the first part and gradi-
ent branches. More specifically, the information from two
branches is concatenated and fed into a fusion block, which
adopts the DRN in this work. Some convolution blocks are
also utilized to generate the final reconstructed frames.

2.2. Perceptual Loss Function

We adopt a perceptual loss function for the CNN-based
in-Loop Filter in the hybrid compression framework to fur-
ther enhance the subjective visual quality. The whole loss
function consists of four parts: distortion, perceptual, ad-
versarial, and structural loss. We use L1 loss as the basic
distortion loss in the pixel domain to force low-frequency
correctness and use LPIPS loss to improve high-level fea-
ture fidelity.

As for the adversarial loss, we follow PatchGAN [5] to
adopt Markovian discriminator to focus on modeling high-
frequencies at the scale of patches and utilize Relativistic
GAN loss [7] which helps to learn sharp edges and more
detailed textures. We denote the Patch-wise Relativistic av-
erage Discriminator as DPat, which can be formulated as:

DPat(xr, xf ) = σ(CPat(xr − Exf
[CPat(xf ])),

where σ is the sigmoid function, CPat(x) is the patch-wise
discriminator output, xf and xr are the output images of
the SPiLF and the ground truth, respectively. The GAN loss
function can be stated as follows:

LD =− Exr
[log(DPat(xr, xf ))]

− Exf
[log(1−DPat(xf , xr))],

LG =− Exr
[1− log(DPat(xr, xf ))]

− Exf
[log(DPat(xf , xr))],

The structural loss LST is designed for improving the struc-
tural similarity between the output and the ground truth with
gradient maps. In summary, the overall loss function can be
formulated as:

Ltotal = λ1×L1+λ2×LLPIPS+λ3×LGAN+λ4×LST .

where λi is the weight of each loss. We modify the λ param-
eter list for different optimization target, and the detailed



settings are illustrated in Section 3.

2.3. Resource Allocation

The task of this challenge is to choose the allocation rate
of each compressed image to minimize the overall distor-
tion under a given rate constraint. Under the constrained
optimization purpose, we find that the task can be trans-
formed into a constrained programming problem:

argmin

N∑
i=1

M∑
j=1

Di(Qj)× xij

s.t.

N∑
i=1

M∑
j=1

Ri(Qj)× Pi × xij ≤ T

where Qj denotes the jth quantization parameter (QP) in
our search space, Di(Qj) and Ri(Qj) are the distortion and
rate cost when the image is compressed with QP Qj . Pi

denotes the pixel number of the ith image, xij represents
the flag whether quality jth is chosen for compressing the
ith image, which subjective to ∀i

∑M
j=1 xij = 1. T means

the total target bits.
We use the Linear Integer Programming method to solve

the problem. Specifically, After establishing the constraint
equation and the objective equation, we use the public
solver to get the optimal index combination. In order to
facilitate the calculation, the solver requires the coefficients
to be integers, so we scale all the parameters uniformly to
meet the requirements.

3. Experiments
3.1. Dataset

We adopt DIV2K [2] as the training dataset which con-
tains 800 images for training and 100 images for valida-
tion with 2K resolution. For training set generation, we
compress DIV2K training set using eight different QPs =
{22, 27, 32, 37, 42, 47, 52, 57} with DBF, SAO and ALF
disabled under all-intra configuration.

3.2. Training Setting

3.2.1 Progressive Training

GAN-based image compression task often suffers from un-
stable training and undesired objective performance, espe-
cially at low bit-rate. So we perform a two-stage training
strategy to achieve stable training. First, we only use L1

and LST to optimize the model. After the entire network
converges, the total loss is applied for the final finetune.

3.2.2 Loss Function Weights

For different optimization targets (PSNR and Perceptual),
we apply different loss functions on the in-loop filter model

Team Name λ1 λ2 λ3 λ4

Arabica 1 0 0 5e-3
ArabicaPerceptual 1 50 5e-2 5e-3

Table 1. The loss function weight setting of the proposed Arabica
and ArabicaPerceptual methods.

of the same architecture. Table 1 shows the detailed weights
for the proposed loss functions. We remove perceptual
oriented loss on Arabica to focus on the improvement of
PSNR, and set λ2, λ3 to 50 and 0.05 for ArabicaPerceptual
to improve high-level feature fidelity and generate more re-
alistic results. The gradient branch and the structural loss
are utilized to restore the structural information of the im-
age, so its existence mainly improves the subjective quality.

3.2.3 Training Details

We set the batch size to 32, and randomly crop the training
sequences into the resolution of 256 × 256. The Adam op-
timizer is adopted whose parameters β1 and β2 are set as
0.9 and 0.999. The learning rate is initialized to 1 × 10−4

and decreased by a factor of 2 when evaluation performance
becomes stable. The entire network converges after 450
epochs. All experiments are conducted using the PyTorch
with NVIDIA GTX 3090 GPUs.

3.3. Performance Analysis

We compare our methods with two traditional hybrid
compression methods: BPG and ECM, and all experiments
are conducted on CLIC 2022 validation set for the image
track. To verify the performance of our proposed schemes,
the objective results of different compression methods are
shown in Table 2. It can be observed that the Arabica will
surpass ECM by 0.15 to 0.2 dB at the same bpp on PSNR,
and the ArabicaPerceptual performs the best in terms of
LPIPS among all methods.

4. Concluding Remarks and Discussions
In this paper, we propose the hybrid compression method

with perceptual in-loop filter. To be specific, considering
structural deformation caused by the GAN-based loss func-
tion, we propose the Structure-Preserving in-Loop Filter
and the gradient loss for constraining the output to maintain
accurate structure. For perceptual optimization, LPIPS and
PatchGAN are utilized to generate more plausible results.
The proposal is mainly focusing on perceptual-friendly im-
age compression for human vision. For video compression,
as the GAN-loss optimized video frame might cause the
coding efficiency degradation for inter-frame motion com-
pensation, it worthy further study instead of simply apply
the GAN-loss optimization for non-reference video frames.



Method Name 0.075 bpp 0.15 bpp 0.3 bpp
PSNR↑ MS-SSIM↑ LPIPS↓ PSNR↑ MS-SSIM↑ LPIPS↓ PSNR↑ MS-SSIM↑ LPIPS↓

BPG444 27.989‡ 0.9201‡ - 30.214‡ 0.9493‡ - 32.827‡ 0.9695‡ -
ECM 28.233 0.9345 0.308 30.423 0.9603 0.235 32.692 0.975 0.170

Arabica 28.352‡ 0.9349‡ 0.304 30.604‡ 0.9609‡ 0.231 32.890‡ 0.9762‡ 0.169
ArabicaPerceptual 28.464‡ 0.9333‡ 0.254 29.945‡ 0.9541‡ 0.197 32.391‡ 0.9733‡ 0.128

‡: Results copied from CLIC 2022 Validation set Leaderboards.

Table 2. Objective results comparison on CLIC 2022 Validation set.

(a) BPG
(0.02 / 27.02dB / 0.552)

(b) ECM
(0.02 / 28.76dB / 0.524)

(c) Arabica
(0.02 / 28.96dB / 0.531)

(d) ArabicaPerceptual
(0.02 / 28.65dB /0.464)

Figure 2. The human content visual results and their enlarged de-
tails of traditional hybrid codecs BPG, ECM, the proposed Arabica
and ArabicaPerceptual. The parentheses contain (BPP / PSNR /
LPIPS).

References

[1] Enhanced Compression Model (ECM ver. 3.1). https:
//vcgit.hhi.fraunhofer.de/ecm/ECM.git Ac-
cessed: March 20, 2022. 1

[2] Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge
on single image super-resolution: Dataset and study. In CVPR
Workshop, 2017. 3

[3] Benjamin Bross, Jianle Chen, Jens-Rainer Ohm, Gary J. Sul-

(a) BPG
(0.06 / 20.66dB / 0.678)

(b) ECM
(0.06 / 20.96dB / 0.639)

(c) Arabica
(0.06 / 21.04dB / 0.642)

(d) ArabicaPerceptual
(0.06 / 20.89dB / 0.543)

Figure 3. The forest content visual results and their enlarged de-
tails of traditional hybrid codecs BPG, ECM, the proposed Arabica
and ArabicaPerceptual. The parentheses contain (BPP / PSNR /
LPIPS).

livan, and Ye-Kui Wang. Developments in International Video
Coding Standardization After AVC, With an Overview of Ver-
satile Video Coding (VVC). Proceedings of the IEEE, pages
1–31, 2021. 1

[4] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, 2018. 2

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In CVPR, 2017. 2

[6] Cheng Ma, Yongming Rao, Yean Cheng, Ce Chen, Jiwen Lu,
and Jie Zhou. Structure-preserving super resolution with gra-
dient guidance. In CVPR, 2020. 1

[7] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
ECCV Workshop, 2018. 1, 2

[8] Yingbin Wang, Han Zhu, Yiming Li, Zhenzhong Chen, and
Shan Liu. Dense residual convolutional neural network based
in-loop filter for hevc. In VCIP, 2018. 2

[9] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In CVPR, 2018. 1


