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Abstract

This paper describes the technical scheme of team Foo in
the video compression track of Workshop and Challenge on
Learned Image Compression (CLIC) 2022. Our method in-
cludes a VVC/H.266 codec and a quality enhancement net-
work. Firstly, considering the coding efficiency and target
bitrates of this challenge, we use the VVC codec and adopt
adaptable configuration parameters for each video. Then,
we propose a quality enhancement network supervised by
multiple objective and perceptual losses to postprocess the
decoded frames for high quality video restoration. Com-
pared to the VVC codec configured with default parameters,
the proposed method improves both PSNR and SSIM.

1. Introduction
VVenC/VVdeC software [11, 12] is an open-source en-

coder and decoder implementation of VVC/H.266 [1], the
newest generation of video coding standards. Due to ad-
ditions and improvements of various coding tools, VVC
achieves about a 50% bit-rate reduction over its predeces-
sor, HEVC/H.265 [10]. Consequently, the VVC codec with
high coding efficiency is well suitable to serve as the basis
of our solution. In the meanwhile, considering that the com-
pressed videos are judged by human raters, VVenC includ-
ing subjective quality enhancement techniques are chosen
for higher perceptual quality instead of VTM [9], which is
the official test model of VVC.

Similar to previous video coding standards since
H.26x [10], VVC is based on the hybrid video coding prin-
ciple, combining prediction and transform coding of the
quantized prediction residual to reduce redundancy in the
video signal. When encoding a frame in a specific video
sequence, the encoder first divides the frame into blocks
with various sizes adaptively according to local statistics,
and then for each block, the predictions of the samples are
generated by inter-picture prediction or intra-picture predic-
tion referring to the samples in the temporally colocated
block or spatial neighboring samples respectively. After
that, the difference between the prediction and the origi-

nal input video signal will be transformed, quantized and
eventually encoded into the binary bitstream together with
other necessary coding information using Context Adaptive
Binary Arithmetic Coding (CABAC).

2. Proposed Method
The proposed method includes a VVC codec and a

quality enhancement network. For the VVC codec, the
VVenC/VVdeC software is adopted. In order to obtain de-
coded videos with high quality under bitrate requirements,
we select adaptable configuration parameters and an appro-
priate quantization parameter (QP) for each video. Subse-
quently, a quality enhancement network is proposed to im-
prove the reconstruction quality of the decoded videos. This
quality enhancement network is based on EDVR [13] model
and supervised by multiple objective and perceptual losses,
which is inspired by [15].

2.1. Searching the optimal QP for each video

To satisfy the bitrate constraint of the challenge and im-
prove quality of the decoded videos as much as possible, it
is crucial to assign an appropriate value to the QP that deter-
mines the step size of the quantization process and controls
the fidelity and bitrate of video compression. As a larger
QP lowers the bitrate but also deteriorates the quality, the
optimal QP is the minimal one that fulfils the bitrate re-
quirement. At the same time, it is notable that allocating
an identical QP value to each video in the video set is un-
sensible, because complex and dynamic videos need more
bitrate to be encoded than simple and static videos at the
same compression quality. To maximize the overall quality
of the entire video set under the bitrate constraint, we apply
a dynamic programming algorithm inspired by the optimal
bit allocation algorithm in [4] to search the optimal bitrate
and QP for each video.

First, we calculate the weight of each video wk using

wk =
nk∑
k nk

, (1)

where nk is the number of pixels for each frame in the kth
video in the video set.
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Figure 1. The architecture of the quality enhancement network, which is optimized by multiple objective and perceptual losses

Second, we define dpi,j as the maximum weighted SSIM
of the first i videos with the total bitstream size no more than
j given by

dpi,j = max

 ∑
1≤k≤i

wk ∗ SSIMk

s.t. ∑
1≤k≤i

sizek ≤ j,

(2)
where wk, SSIMk and sizek are the weight, SSIM and
bitstream size of the kth video respectively.

From the definition mentioned above, it is not difficult to
gain the state transition equation as

dpi,j =


0 i ∗ j = 0

max{dpi−1, j−sizei,m

+wi ∗ SSIM i,m|m ∈M} else,

(3)

where SSIM i,m and sizei,m represent the SSIM and bit-
stream size of the ith video when using the mth QP value
(QPm) to encode, and m belongs to a predefined QP range
M . And the optimal QP choice choicei for the ith video is
calculated as

choicei = QP argmax
m
{dpi−1,j−sizei,m

+wi∗SSIMi,m|m∈M}.

(4)
Finally, to obtain the unknown SSIM i,m and sizei,m in

Eqs. (3) and (4), we select a specific QP range M to guar-
antee a relatively large search space, and then each video in
the video set is encoded by each QP in this range. In this
way, we acquire corresponding bitstream size and SSIM un-
der different QP settings for each video. After that, all data
needed for the algorithm have been ready and the optimal
QP for each video can be readily calculated by means of the
dynamic programming algorithm.

2.2. VVenC coding configuration

In addition to QP, some other configuration parameters
are also adapted to the specific video:

• Input, output and size are set to the corresponding val-
ues of the video;

• Gopsize is set to 32 for static videos and this value
changes to 16 when encoding dynamic videos since
there is more difference between the adjacent frames;

• Intraperiod is set to 64 after a tradeoff between bi-
trate (longer intraperiod) and picture quality (shorter
intraperiod);

• Internal-bitdepth is set to 8.

The remaining configuration parameters maintain the de-
fault values in VVenC.

2.3. The quality enhancement network

The network architecture is shown in Fig. 1. Based on
the EDVR model, we maintain its Pyramid, Cascading and
Deformable (PCD) alignment module and reconstruction
module, and remove other modules considering a tradeoff
between efficiency and model size. Given 2N + 1 consec-
utive decoded frames I[t−N,t+N ], the quality enhancement
network aims to enhance the center frame It referring to its
neighboring frames. For each input frame, its two chromi-
nance channels are first upsampled and then concatenated
with its luminance channel to form a three-channel input
frame. A 3× 3 convolution layer extracts features for each
three-channel input frame. Then, the PCD alignment mod-
ule aligns features of each neighboring frames to that of the
target center frame following pyramidal structure and cas-
cading refinement principles, which is designed to process
large and complex motions and replace optical flow net-
work. Then the aligned features of each frame are fused
by a 1 × 1 convolution layer. Next, a reconstruction mod-
ule composed of several residual blocks is performed and
the last convolution layer generates a three-channel frame
residual. Finally, the enhanced frame is obtained by adding



the predicted frame residual to the three-channel input of
center frame. The enhanced frame is split, where luminance
channel Ŷ is generated and chrominance channels (Û and
V̂ ) need to be downsampled.

2.4. Objective and perceptual losses

During training, the quality enhancement network is
optimized by multiple objective and perceptual losses as
shown in Fig. 1, which is inspired by [15]. Because lumi-
nance channel contains most of the texture information and
details, it is reasonable to add more supervision on lumi-
nance channel than that on chrominance channels. The pre-
dicted Ŷ is decomposed to a Laplacian pyramid [2] consist-
ing of three components, where low-frequency component
P̂0 contains global luminance and image structure and high-
frequency components {P̂1, P̂2} contain multi-scale details.
Correspondingly, the ground truth luminance channel Y is
also decomposed to a three-layer Laplacian pyramid to gen-
erate three components {P0, P1, P2}. To reduce the differ-
ence between P̂0 and P0, we adopt the SSIM loss [14] Ls

which focuses on structure similarity, which is defined as

Ls = 1− SSIM(P̂0, P0). (5)

To reconstruct multi-scale details, we adopt the Charbon-
nier loss [8] on high-frequency components as

Ld =

√
‖P̂2 − P2‖2 + ε2 +

√
‖P̂1 − P1‖2 + ε2, (6)

where ε = 10−3. For chrominance channels, we also use
the Charbonnier loss on each channel as

Luv =

√
‖Û − U‖2 + ε2 +

√
‖V̂ − V ‖2 + ε2. (7)

To generate realistic texture and improve subjective qual-
ity of enhanced frames, we use generative adversarial net-
work [3] during training. The quality enhancement network
is known as the generator, and a PatchGAN [5] discrimina-
tor is proposed. Additionally, we enhance the discriminator
based on the Raletivistic average GAN (RaGAN) [6], which
predicts the probability that a real data is relatively more
realistic than a fake data. The RaGAN loss is proposed on
high-frequency components of the Laplacian pyramid of lu-
minance channel. The adversarial loss is defined as

LG =
∑
i

{−EPi [log(1−DRa(Pi, P̂i))]−EP̂i
[log(DRa(P̂i, Pi))]},

(8)
and the discriminator loss is defined as

LD =
∑
i

{−EPi [log(DRa(Pi, P̂i))]−EP̂i
[log(1−DRa(P̂i, Pi))]},

(9)
where i ∈ {1, 2} and DRa is the Raletivistic aver-

age Discriminator defined as DRa(Pi, P̂i) = σ(C(Pi) −
EP̂i

[C(P̂i)]), σ is the sigmoid function andC(x) is the non-
transformed layer.

Therefore, the final loss is calculated as

Lfinal = Ls + Ld + Luv + λ(LG + LD), (10)

where λ is a hyper-parameter to weight the RaGAN loss.

3. Experiments
3.1. Implementation Details

The original .mp4 video sequences are first converted to
.yuv sequences, and then are encoded with the VVenC soft-
ware to produce target bitstreams. To determine the optimal
QP for each video, we select a QP range from 31 to 37 for
the high bitrate track (1mbps) and a QP range from 46 to 52
for the low bitrate track (0.1mbps).

The quality enhancement network takes three (N = 1)
frames as input. The PCD alignment module adopts 5 resid-
ual blocks to extract features before constructing its pyrami-
dal structure. The reconstruction module adopts 10 residual
blocks. To train the network, we utilize 262 videos from the
CLIC2022 validation set (excluding the 30 videos needed
for the validation phase) as training dataset and produce
compressed frames by the VVenC/VVdeC software with
adaptable coding configuration in Sec. 2.2. The QPs are set
to 32, 34 and 36 (1mbps) and 47, 49 and 51 (0.1mbps) dur-
ing the training dataset compression. Therefore, we train
two quality enhancement networks with different weights
for 1mbps and 0.1mbps tracks.

We train the network in two steps. For the first step,
only objective losses Ls + Ld + Luv are used to pretrain
a model focusing on details reconstruction, and for the sec-
ond step, we initialize the model weights by those from the
pretrained one and utilize Lfinal to improve the perceptual
quality. During training, we use patches of size 256×256 as
input and augment the training data with random cropping,
flipping, 90◦ rotations and the CutBlur [16] technique. The
batch size is set to 32. The network is optimized by the
Adam [7] optimizer with β1 = 0.9 and β2 = 0.999. The
learning rate starts at 2e−4 for the first step and 5e−5 for the
second step, and decays with a cosine learning rate decay
strategy. All the networks are trained for 150000 iterations.
During inference for the validation phase, we divide frames
of 1080p to patches of size 1080× 1080 with an overlap of
size 240 × 240 because of the limit of GPU memory. Par-
ticularly, for frames of 720p, we adjust the size of patches
to 720×1080 according to the length of the shortest side of
each frame.

3.2. Results

We evaluate our proposed method on the 30 videos
needed for the validation phase. As shown in Tabs. 1 and 2,
the proposed method achieves higher PSNR and SSIM com-
pared to the VVenC/VVdeC configured with identical QP
for each video and default parameters. The optimal QP



Method Datasize PSNR SSIM

VVenC/VVdeC (QP=34) 33170549 35.557 0.9613
Ours (optimal QP) 37465824 36.283 0.9657

Ours (optimal QP + Sfst) 37465824 36.412 0.9673
Ours (optimal QP + Ssec) 37465824 36.162 0.9641

Table 1. Performance of the submitted 30 videos in 1mbps track
using different methods. Sfst means the first step training of the
quality enhancement network with objective losses Ls+Ld+Luv .
Ssec means the second step training with Lfinal loss.

Method Datasize PSNR SSIM

VVenC/VVdeC (QP=49) 3297603 27.797 0.8396
Ours (optimal QP) 3648583 28.565 0.8652

Ours (optimal QP + Sfst) 3648583 28.660 0.8705
Ours (optimal QP + Ssec) 3648583 28.583 0.8670

Table 2. Performance of the submitted 30 videos in 0.1mbps track
using different methods.

strategy makes better use of avaliable bitstream sizes under
challenge requirements and obtains more reasonable allo-
cation of bitrates between different videos. The first step
training of the quality enhancement network with objective
losses Ls + Ld + Luv gains better performance. The sec-
ond step training with Lfinal loss leads to a relatively lower
PSNR score but achieves better subjective quality. Specif-
ically, Sfst produces frames that are relatively smooth and
miss details, while Ssec produces frames that preserve more
textures. And because PSNR score reflects accuracy in pixel
level, the optimization in perception level often leads to a
decrease in PSNR score. For the validation phase, our team
Foo achieves PSNR scores of 36.412 in 1mbps track and
28.660 in 0.1mbps track.

4. Conclusion
In this paper, we propose a perceptual quality enhance-

ment method for video coding. The video coding standard
VVC is adopted to generate decoded frames by leveraging
both the optimal QP searching strategy and adaptable cod-
ing configuration. Then the quality enhancement network
postprocesses the VVC-decoded frames to produce recon-
structed frames with high subjective quality. Experiments
in both 1mbps and 0.1mbps demonstrate the effectiveness
of the proposed method.
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