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Abstract

Neural video compression has emerged as a novel
paradigm combining trainable multilayer neural net-
works and machine learning, achieving competitive rate-
distortion (RD) performances, but still remaining imprac-
tical due to heavy neural architectures, with large memory
and computational demands. In addition, models are usu-
ally optimized for a single RD tradeoff. Recent slimmable
image codecs can dynamically adjust their model capacity
to gracefully reduce the memory and computation require-
ments, without harming RD performance. In this paper we
propose a slimmable video codec (SlimVC), by integrating a
slimmable temporal entropy model in a slimmable autoen-
coder. Despite a significantly more complex architecture,
we show that slimming remains a powerful mechanism to
control rate, memory footprint, computational cost and la-
tency, all being important requirements for practical video
compression.

1. Introduction

During the last two decades, video has become the domi-
nant form of communication of the digital society. This has
led to an explosive growth where video content accounts
for more than 80% of global data traffic. The basic (lossy)
video compression objective consists of transmitting as few
bits as possible (i.e. minimize rate) while representing the
input sequence at a certain level of fidelity (i.e. distortion).
Video is now consumed using heterogeneous devices rang-
ing from TV sets to smartphones. Furthermore, real-time
video conferencing has become a household technology,
pervasive in work and educational environments. These
practical scenarios imposes additional constraints to the de-
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sign of video codec in practice, such as dynamically con-
trollable rate, low computational and memory footprint, and
low latency. Together with the previous rate and distortion
objectives, they conform the more challenging problem of
practical video compression.

In parallel, the deep learning revolution has motivated a
new compression paradigm based on parametric encoders
and decoders implemented as deep neural networks which
are optimized with data. This compression approach has
been applied successfully first in images [4, 5, 7] and then
videos [6, 13]. This paradigm contrasts with the tradi-
tional hybrid video coding paradigm, based on block-based
linear transforms and carefully engineered coding tools
(e.g. H.264/AVC, H.265/HEVC). Focusing on improving
rate-distortion performance, most neural image and video
codecs are impractical, since require heavy and complex
networks. Practical aspects have been always carefully con-
sidered in the design of traditional codecs. In contrast to
previous works, our paper focuses chiefly on those practical
constraints, proposing a lightweight and flexible design for
practical neural video compression.

Our design is based on a slimmable autoencoder aug-
mented with a slimmable temporal entropy model. This
design is motivated by two recent works. Motivated by
the empirical observation that lower rates do not require
the use of full capacity, Yang et al. [12] proposed the
slimmable compressive autoencoder (SIimCAE) architec-
ture, where the slimming becomes a flexible mechanism to
both vary the rate-distortion tradeoff and control the com-
plexity. However, extending SlimCAE to video by includ-
ing temporal prediction is not trivial, since most designs re-
quire additional modules to estimate and compensate mo-
tion (e.g. optical flow nets, motion compensation nets).
Slimmable designs of such modules are not straightforward,
nor the potential interplay with other elements in the com-
pression framework. Recently, Sun et al. [9] proposed spa-
tiotemporal entropy model (STEM), a motion-free frame-



work where temporal prediction is performed directly in the
entropy model without any motion estimation nor compen-
sation. In our framework we adopt part of STEM’s entropy
model and propose a slimmable version, thus having a fully
slimmable codec.

In summary, this work contributes with a novel
slimmable video codec (SlimVC) designed to address prac-
tical challenges in the neural video compression paradigm,
via a simple slimming mechanism. Experiments show that
our slimmable model can effectively exploit temporal re-
dundancy without a significant drop in RD performance
compared to that of independent models.

2. SlimCAE and STEM
2.1. Slimmable compressive autoencoder

Neural image codecs are implemented typically as com-
pressive autoencoders (CAEs) [4, 10], consisting of autoen-
coders augmented with quantization and entropy coding.
The encoder z = f (x;60) parametrized by 6 transforms
the input image x into a latent representation z, which is
then quantized as q = @ (z) and the entropy encoder maps
it to the bitstream b. In the decoder, b is mapped back
to the reconstructed latent representation z, and the de-
coder parametrized by ¢ recovers the reconstructed image
X = ¢ (2; ¢). During training, quantization is replaced by a
differentiable proxy are used (additive uniform noise, in our
case) and entropy coding is bypassed and the rate is approx-
imated by the entropy of the latent representation. This re-
quires a model of the probability distribution parametrized
by v. This model, usually refer to as entropy model, has
been the source of many improvements in RD performance,
by including hyperpriors [5] and autoregressive models [7].

CAE:s are typically trained by minimizing a RD objective

L(O,p,v;X,X)=D(0,6,1;X)+ AR (0; X), (1)

where X is the set of training images, A is the tradeoff be-
tween the rate R of the latent representations and distortion
D between input and reconstructed images, averaged over
X.

An slimmable compressive autoencoder (SIimCAE) [12]
is a CAE whose layers are slimmable. The slimmable lay-
ers can discard part of the parameters while still performing
a valid operation. This results in less expressivenes, but
also lower memory footprint and computation. The Slim-
CAE contains K sub-models, each of which is determined
by a set of parameters (%), ¢ () € W) where
k=1,..., K. The parameters of the sub-model k are a su-
perset of the parameters in the sub-model k& — 1. Finally, the
K sub-models are trained jointly using a joint loss

K
L(w;x) =Y £® (e(@, QS X) . 2)
1

In [12], the authors showed that if the set of \(¥) are deter-
mined properly for the specific sub-modules, SIimCAE can
achieve roughly the same RD performance of independent
models optimized for single fixed As.

2.2. Spatiotemporal entropy model

Sun et al. [9] proposed a motion-free video compres-
sion method observing that inter-frame redundacy can be
exploited efficiently in the entropy module via a spatiotem-
poral entropy model (STEM) [9] without requiring motion
estimation. In this model, the hyperencoder (HE) of the hy-
perprior receives the latent representations z; and z;_; of
both the current frame and the previous one, allowing it to
exploit temporal redundancy, reducing the rate of the side
information received by the hyperdecoder (HD). In addi-
tion, only the residual latent Z,..s = Z; —Z;_1 is transmitted
in the bitstream. In order to obtain more accurate distribu-
tion models, while further exploiting spatial and temporal
redundancy, STEM includes a spatial prior module (SPM)
and a temporal prior module (TPM), together with an en-
tropy parameters module (EPM) that fuses the information
and predicts the actual distribution parameters at time ¢.

SPM is an autoregressive PixelCNN-like network, and
provides a relatively minor gain in RD performance at sig-
nificant increased computational cost and particularly, two
orders of magnitud increase in latency (from tenths to tens
of seconds, both reported by [9] and verified in our imple-
mentation). For these practical reasons, we chose not to
include SPM in our framework.

3. Fully slimmable framework

The proposed framework is shown in Fig. 1, where
all trainable modules are designed to be slimmable',
including both the feature autoencoder (i.e. SlimFE,
SlimFD) and the entropy model (i.e. SlimHE, SlimHD,
SlimTPM, SIimEPM). For simplicity, we assume uniform
slimming, that is, the width (i.e. number of channels)
in every slimmable layer is slimmed by the same fac-
tor (we use the same factors as in SIimCAE [12], i.e.
[0.25,0.375,0.5,0.75,1]). Table 1 provides more details
about the architecture of the slimmable modules. SlimVC
is trained in two stages. First, we train it as an image-
based SIimCAE with hyperprior. Then we discard the hy-
perprior, and add the remaining modules of SIimVC (note
that SlimCAE’s hyperprior is image-based, while SlimHE
and SlimHD have distinct architectures and designed for
pairs of frames). Then we fix SIimFE and SlimFD, and train
the remaining slimmable modules.

'We use switchable GDN's .
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Figure 1. Slimmable video codec framework. In the slimmable modules (SimFE, SlimFD, SlimHE, SlimHD, SlimTPM and SlimEPM),
dashed lines represent the full capacity of the module, and solid ones the specific capacity after slimming to a particular operating point.

Table 1. Details of the slimmable modules in our implementation of SlimVC. Width factors: 0.25/0.375/0.5/0.75/1. SConv/SDeconv:
slimmable convolution/transposed convolution, swWGDN/swIGDN: switchable GDN/IGDN, LReLLU: Leaky ReL.U.

Module

Architecture

Params (millions)

SlimFE SConv9x9s3¢48/72/96/144/192-swGDN-SConv5x5s2c48/72/96/144/192-swGDN-SConv5x552¢48/72/96/144/192-swGDN

0.1/0.3/0.5/1.1/2

SlimFD |swIGDN-SDeconv5x5s2c48/72/96/144/192-swIGDN-SDeconv5x5s2¢48/72/96/144/192-swIGDN-SDeconv9x9s3¢48/72/96/144/192|  0.1/0.3/0.5/1.1/2

SlimHE
SlimHD
SlimTPM
SlimEPM

SConv3x3s1c64/96/128/192/256-LReLU-SConv5x5s2¢64/96/128/192/256-LReLU-SConv5x5s2¢64/96/128/192/256
SConv5x5s52¢64/96/128/192/256-LReLU-SConv5x552¢64/96/128/192/256-LReL.U-SConv3x3s1¢160/240/320/480/640
SConv5x5s1¢107/160/213/320/426-LReLU-SConv5x5s1¢133/200/267/400/533-LReLU-SConv5x5s1¢160/240/320/480/640
SConv1x1s1c400/600/800/1200/1600-LReLU-SConv1x1s1¢320/480/640/960/1280-LReLU-SConv1x1s1¢96/144/192/288/384

0.7/1.2/1.7/2.8/4.2

0.9/1.4/2.0/3.3/4.8
3.0/4.8/6.7/11.1/16.2

0.8/1.2/1.8/3.0/4.6

4. Experiments
4.1. Experimental settings

Datasets and training details We use Open Images [2]
and CLIC as training datasets [1] during the first training
stage, with random 256 x 256 crops and a batch size of 16
crops. For the second stage, we use small sequences from
the Vimeo-90k dataset [11], in 256 x 256 pixel crops and
a batch size of 32 crops. The model has five RD operating
points (i.e. [0.25,0.375,0.5,0.75,1], as mentioned earlier).
We use a learning rate of Se-5, and mean square error (MSE)
as distortion metric.

Methods SlimVC (GOP=N): the proposed approach af-
ter the second stage of training with a group of pictures of
size N. SimVC (intra-only): is the codec resulting from
the first stage without exploiting temporal redundancy. In-
dependent VCs (GOP=N): uses the same architecture of
SlimVC but with a single width, so each RD point cor-
responds to a different model trained independently for
that specific RD tradeoff. For comparison we also include
H.264, STEM [9] and DVC [6]. Note that DVC is signifi-
cantly more complex, and uses motion estimation and com-
pensation with temporal prediction in the pixel domain.

4.2. Rate-distortion

We compressed the first 100 frames of HEVC Class B
sequences [8] and the Ultra Video Group test sequences [3]
with a GOP size of 10 and 12 pictures, respectively. The RD
performances of the different methods are shown in Fig.22.
The proposed SlimVC has a RD performance very close to
that of independently trained VCs, thus showing the bene-
fit of SlimVC in terms of providing variable rate with one
single model. Comparing with SIimVC (all intra), we can
see that the slimmable temporal entropy model and the sec-
ond stage are effective in consistently reducing the rate at
all RD points (SlimVC curves are shifted towards the left).
RD performance is comparable to that of H.264, and re-
mains below that of DVC, which is significantly more com-
plex and lacks the flexibility of SlimVC (see next section).
Besides, the design of SIimVC has still considerable room
form improvement of RD performance.

2We included the RD curve of STEM from [9] for reference, but note
that the architectures are not comparable: the implementation of STEM
in [9] uses encoders and decoders with four convolutional layers, while
we use three, and their entropy model leverages an autoregressive context
model and an SPM, which are not used in our case.
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Figure 2. Rate-distortion performance on the HEVC Class B
dataset (top) and UVG dataset (bottom).

4.2.1 Memory and computational efficiency

We measured the efficiency of SlimVC and other base-
lines in terms of computational cost (in floating point op-
erations, FLOPs) and memory footprint (in MB) when pro-
cessing 1080P input sequences (i.e., 1920x1080x3). Ta-
ble 2 shows that SlimVC requires significantly less compu-
tations than the other video baselines, especially in lower
rates where the slimmable design is able to avoid most of
the computations, leading to very significant speedups (up
to 20x for low rates).

Fig.3 shows the detailed memory footprint of SlimVC
and the different modules for the different widths. It shows
that SIimVC is a lightweight method, whose memory foot-
print can be gracefully adjusted depending on the rate
needs. In contrast to SImCAE, where the feature encoder
and decoder were the main bottlenecks in terms of memory
and computation, in SlimVC the most critical modules in

this regard are those related to entropy modeling. In partic-
ular, the temporal prediction module is the heaviest module
of the codec.

Table 2. Computational cost (GFLOPs) for the different methods
for 1080P sequences.

Methods Low rate = Mediumrate = Highrate

SHImFE/FD| 9.6 185 34 56 90
SIimTPM | 424 68 95.7 160 2325

SlimVC| SlimEPM 11 17.5 25.7 439 66

z SIimHE/HD| 10 15 207 333 476
E Total 73 119 176 293 436
E [ Tndep. VCs 73 119 176 293 436
STEM 63 643 683 643 oM
STEMw/oSPM | 613 613 613 613 613

DVC 3074 3074 3074 3074 3074
SImFE/ED| 9.6 185 34 56 90

SimTPM | 424 68 95.7 160 2325
SlimVC| SlimEPM 11 17.5 25.7 439 66

%D SlimHD 6 9 12.2 194 274
It Total 69 113 168 279 416
A Indep. VCs 69 113 168 279 416
STEM 1509 1509 1509 1509 1509

STEM w/o SPM 1479 1479 1479 1479 1479
DvVC 1434 1434 1434 1434 1434

M SlimFE M SlimFD ® SIimTPM = SlimEPM ® SlimHE B SlimHD
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Figure 3. Memory footprint of SlimVC for different widths (and
correspondingly, bit rates).

5. Conclusion

Motivated by some practical limitations of current neu-
ral video codecs, we propose slimmable video codec
(SlimVC), a novel adaptive architecture based on slimmable
modules that can provide significant savings in memory and
computational costs for low and mid rates, together with
variable rate control with one single video model. While
SlimCAE showed that slimmable codecs are promising ap-
proaches for practical neural image compression, SlimVC
further advances this potential for the case of practical neu-
ral video compression.
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