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Abstract

In many applications, such as burst photography and
magnetic resonance imaging (MRI), multiple images are ac-
quired to reduce the noise of the eventual reconstructed im-
age. However, this leads to very high dimensional datasets
which have redundant information across the various ac-
quired images. In MRI, multiple images are acquired via
multiple RF coil arrays in the scanner. Afterwards, coil
compression is performed to convert the original set of coil
images into a smaller set of virtual coil images to enable
smaller datasets and faster computation time. However, tra-
ditional iterative coil compression methods are lossy and
time-consuming. In this work, we propose a novel neu-
ral network-based coil compression method in pursuit of
higher reconstruction accuracy and faster coil compres-
sion. Our learned compression method achieves up to 1.5x
lower NRMSE and up to 10 times runtime speed compared
to traditional methods on a benchmark test dataset.

1. Introduction

In many imaging applications, such as burst photogra-
phy and magnetic resonance imaging (MRI), multiple im-
ages are acquired of approximately the same scene in or-
der to reduce the noise of the eventual image. In MRI,
this is done by using receiver arrays with multiple coil el-
ements [17], enabling parallel imaging (PI) [9, 15, 18] ac-
celeration. In parallel imaging, the known sensitivities and
placement of the receiver coils are utilized to locate the sig-
nal, which allows the number of phase-encoding steps dur-
ing signal acquisition to be reduced. Taking these multiple
coil images and combining them into one image in the even-
tual image reconstruction process results in higher signal to
noise ratio (SNR), where SNR increases as a factor of the
square root of the number of images acquired. However,
the large number of coils creates prohibitively large MRI
datasets because these datasets contain multiple volumet-
ric slices per patient and potentially a dynamic dimension.

Additionally, a scan for a single patient typically contains
multiple sequences (10-12 sequences per scan). The size of
these datasets becomes increasingly problematic in terms of
memory as well as infeasible computation time for recon-
struction. Coil compression algorithms are effective in mit-
igating this problem by compressing data from many coils
into fewer virtual coils.

Originally, coil compression was done in hardware [12].
Howeyver, such a hardware combiner does not consider the
spatially varying sensitivities of the various coils, which
leads to a larger loss in the compression of the entire sig-
nal [23]. Currently, there are two main traditional soft-
ware methods for coil compression. The oldest and sim-
plest method is to take the singular value decomposition [4]
(SVD) across the set of various coil images. However, this
method is slower compared to more advanced techniques.
A faster method is geometric coil compression [23] (GCC).
GCC removes the correlations between various coils across
the fully-sampled readout dimension, allowing for reduc-
tion in data. Although GCC is faster than SVD, both are
still iterative method, which are computationally expensive.
In addition, the compression performance of both SVD and
GCC drops off when the ratio of the dimensionality of orig-
inal coils to virtual coils is very high.

Deep learning (DL) has been successful in a wide range
of MRI applications, including reconstruction [5, 10, 13, 14,

,21] and segmentation [1]. DL has also been used for var-
ious types of data compression such as singular image com-
pression [2,7] and genomic data compression [0, &]. In this
work, we therefore propose and develop a neural network-
based coil compression (NN-based CC) method to provide
faster and more accurate compression on a set of images,
rather than on the individual images themselves.

2. Methods

We propose a neural network-based framework to learn
the coil compression task of mapping from our original coil
space to our latent virtual coil space. Ultimately, our goal
is to learn the representation of such a mapping. Inputs
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Figure 1. Framework overview of the rapid coil compression using neural networks. Our fully-connected neural network consists of 5 fully
connected layers and it has 10 neurons per hidden layer. The number of channels in our input layer is equal to the number of original coils
in our raw dataset. The number of channels in our output layer is equal to the number of virtual coils (the number of images in our set we

wish to compress to).

to the network are the original coil images from the phys-
ical coil array. Outputs of the network are a set of virtual
coil images. We can set the number of virtual coil images
by setting the number of channels in the last layer of our
network. We first apply the inverse fast Fourier transform
(IFFT) to convert the original coil data from the frequency
domain, otherwise known as k-space, to the image domain.
Our raw data is in the frequency domain because the MRI
signal is collected in the sparse frequency domain, not the
signal domain. We separate the volumetric scan of the pa-
tient into slices along the axial dimension. Then, we feed
multi-coil images, slice-by-slice, into a fully connected neu-
ral network. In the output layer of the neural network, we
generate a set of virtual coils with a lower dimensionality
than the original set of coils. This dimensionality is defined
by the number of channels in the last layer of our network.
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Figure 2. NRMSE vs. number of virtual coils for SVD, GCC and
NN-based CC on the fastMRI test dataset.

We use the square root of sum-of-square (SSOS) to com-
bine individual coil images into one image. The SSOS on
an complex-valued image m with n coils is defined as:

ey

where |m;| is the elementwise absolute value of each
pixel in m.

We optimize the network parameters over the root mean
square (RMS) loss between the SSOS image from the orig-
inal coils and the SSOS image from the virtual coils. The
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Figure 3. Average compression time vs. number of virtual coils for
SVD, GCC and NN-based CC on the knee test dataset. NN-based
CC was about 10 times faster than SVD and GCC. The compres-
sion time of our model was nearly the same for different numbers
of virtual coils while the compression time for SVD and GCC in-
creased as the number of virtual coils increased.



framework of our model is shown in Figure 1.

We train and test our model on the benchmark multi-coil
knee dataset from fastMRI [22], which were acquired using
a 15 channel knee coil array and a conventional Cartesian
2D TSE protocol on either 3T or 1.5 T scanners. Each
subject volume contains slices of size 640x368 with 15
coils. There are 973 volumetric subjects with 34742 to-
tal slices during training and 56 volumetric subjects with
1959 slices during testing. Experiments were performed on
a TITAN Xp GPU which had 64GB of RAM and 3TB of
disk memory. We use normalized root-mean-square-error
(NRMSE) between the original SSOS image and the com-
pressed SSOS image to measure the compression accuracy.
We compare our NN-based CC method with SVD and GCC,
both implemented in BART [19], on the fastMRI dataset.

3. Results

Compression accuracy, measured as the NRMSE be-
tween SSOS images from original coils and virtual coils,
is shown in Figure 2 for different numbers of virtual coils
and different coil compression methods. Our NN-based CC
consistently achieved smaller NRMSE compared to SVD
and GCC. Figure 3 shows the compression time for SVD,
GCC and our NN-based CC. Our NN-based CC was much
faster than the traditional methods across all numbers of vir-
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Figure 4. Comparison of SVD, GCC and NN-based CC. The orig-
inal image (slice 1504 in the fastMRI knee training dataset) was
used as the reference in the first column of the first row. The com-
pression results of SVD, GCC and NN-based CC with 3 virtual
coils were shown in the second, third and fourth column of the
first row, respectively. Compression errors (10x in SVD, GCC and
NN-based CC) were shown in the second row. The SSOS image
from our model had smaller compression loss compared to both
SVD and GCC.

tual coils. In Figure 4, we also visualize the SSOS image
from virtual coils and its difference from the original SSOS
image for SVD, GCC and our NN-based CC. Information
contained in each virtual coil compressed by SVD, GCC
and our NN-based CC is shown in Figure 5.

4. Discussion

As shown in Figure 2, NN-based CC out-performs the
traditional methods SVD and GCC. Also, it performs much
better than the traditional methods when the dimensionality
of the virtual coils is very small. Specifically, our method
achieves more than 1.5x improvement in NRMSE over both
SVD and GCC when the set of original coils is compressed
to 1 virtual coil (i.e., a final composite image). As shown
in Figure 3, another main advantage of the NN-based CC
is that the compression time is much faster than the tradi-
tional methods. Although DL models take a long time to
train - in our case, approximately 8 hours - training only
needs to be done once. For our task of coil compression, in-
ference time using our method is significantly reduced com-
pared to the processing time of traditional iterative methods.
One current large limitation is that a different model needs
to be trained for every different dimensionality of virtual
coils. For future work, we will explore generalizing one
model to any dimensionality of virtual coils. Related to this
model generalization is developing a model which is robust
to dataset shift; i.e. does our model generalize well to the
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Figure 5. Magnitude of 5 virtual coils on a randomly chosen slice
in the fastMRI knee training dataset for SVD (first row), GCC
(second row) and NN-based CC (third row) respectively. For SVD
and GCC, the information is concentrated in one or two virtual
coils. For NN-based CC, the information was spread across each
virtual coil, so it was more robust to the noise.



compression of image sets with anatomies/geometries that
are different from those of the training data?

In this work, we only apply our method to Cartesian
datasets; however, our method could also be applied to
non-Cartesian datasets. There is actually a greater need
for better coil compression in non-Cartesian datasets com-
pared to Cartesian datasets because the current fastest it-
erative method, GCC, cannot be applied to non-Cartesian
sequences [23]. This is because GCC attempts to reduce
redundant information by splitting up the volume into sep-
arate subspaces based on slice-wise indexing. Additionally,
some non-Cartesian sequences, such as 3D cones trajecto-
ries, produce even larger datasets compared to those pro-
duced by Cartesian sequences, due to the large number of
coils used during the scan (approximately 60 coils). Our
method could be also generalized to datasets with any num-
ber of original coils. For example, arrays with 32 coils are
quite common for many types of anatomies, including knee,
chest, and brain.

It would also be potentially useful and interesting to
learn an end-to-end coil compression and image reconstruc-
tion framework, where both the compression and recon-
struction are jointly learned. In this work, we use data
which was fully-sampled in the frequency domain; how-
ever, ideally, we would want to subsample the data in the
frequency domain to later leverage properties of parallel
imaging during the reconstruction process. In such a learn-
ing framework, the ground truth of our model would be the
SSOS image from fully-sampled data, while our inputs to
the network would be subsampled coil images.

Additionally, using an encoder network to compress a
set of images has implications in the computational pho-
tography domain under burst photography. In burst pho-
tography, the camera captures a set of consecutive images
and they must be combined using some multi-frame super-
resolution algorithm [3, 20]. Instead of storing all possible
frames, which may be memory-expensive for mobile pho-
tography, multiple frames could be compressed into a vir-
tual set of frames where the redundant information is re-
moved, and only the unique information gathered by each
frame remains. Such compression of multiple frames into
a smaller set of virtual frames could be learned using our
method. One important goal of most camera systems, es-
pecially in mobile photography, is immediate production of
a photograph [11]. Our method fits well within this time
constraint due to its improved speed over other traditional
methods.

5. Conclusion

In this work, we propose a neural network-based frame-
work to learn the representation of the coil compression
task, where we wish to map from the space of a higher
dimensional set of images to the space of a lower dimen-

sion set of images. To our knowledge, this is the first time
MRI coil compression has been learned. Our learned rep-
resentation achieves a higher compression accuracy com-
pared to the two traditional state of the art iterative methods.
Our method also achieves up to 10 times faster compression
speed.
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