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Abstract

The recent success of self-supervised learning relies on
its ability to learn the representations from self-defined
pseudo-labels that are applied to several downstream tasks.
Motivated by this ability, we present a deep image compres-
sion technique, which learns the lossy reconstruction of raw
images from the self-supervised learned representation of
SimCLR ResNet-50 architecture. Our framework uses a fea-
ture pyramid to achieve the variable rate compression of the
image using a self-attention map for the optimal allocation
of bits. The paper provides an overview to observe the ef-
fects of contrastive self-supervised representations and the
self-attention map on the distortion and perceptual quality
of the reconstructed image. The experiments are performed
on a different class of images to show that the proposed
method outperforms the other variable rate deep compres-
sion models without compromising the perceptual quality of
the images.

1. Introduction

Image compression is fundamental to the intersection of
computer vision, signal processing, and information theory.
The constant evolution in the image compression methods
is critical to meet the ever-growing demand for data transfer
and storage of data. The past few decades have witnessed
the development of various traditional and neural codecs for
efficient compression. The deep neural codecs use convo-
lutional neural networks or generative models to learn the
compressible latent representation of the image. The vari-
able rate models offer the flexibility to adjust the compres-
sion ratio using a single trained architecture. Toderici et
al. [17] proposed the first end-to-end network to achieve
variable rate compression using LSTM. Balle er al. [5]
introduced a trainable decorrelation non-linear normaliza-
tion technique, called Generalized Divisive Normalization
(GDN), to save more bits and achieve better compression.
The GDN is used as the activation in all the image compres-
sion models for higher compression. Toderici et al. [19]

introduced RNN based full resolution image compression
method, which outperformed the traditional codecs. Balle
et al. [3] uses a fully factorized prior model for bit rate
estimation in the end-to-end trainable network. It uses a
non-parametric piecewise linear density model to learn each
factor of factorized prior. Islam et al. [9] utilizes the quan-
tization step to control the variable bit rate. The method
involves the RNN based quantization with the shallow syn-
thesis and analysis architectures. The overall performance
is improved by using an LSTM network to reduce unneces-
sary information. Johnston et al. [10] uses the recurrent net-
work based convolutional architecture with spatially adap-
tive rates. The proposed architecture improves spatial dif-
fusion to effectively capture and propagate the information
through the hidden states. All of these methods deploy high
capacity networks to achieve superior performance and are
prone to training data overfitting. These shortcomings can
be overcome if the condensed and meaningful representa-
tions of the images, that capture variety of features, are used
as inputs to the model.

Self-supervised representation learning is already being
used for various downstream tasks and therefore learning
efficient representations in pretext tasks becomes crucial to
improve the performance of the downstream tasks. Chen
et al. [0,7] proposed SimCLR for self-supervised learning
using contrastive loss framework. SimCLR learns represen-
tations by maximizing agreement between differently aug-
mented views of the same example using a contrastive loss
over latent representation.

The ability of self-supervised models to learn and cap-
ture the variations from tremendously diverse samples is
key to reducing the training complexity of the downstream
models. With the benefit of learning downstream tasks in a
self-supervised setting, we propose a self-supervised vari-
able rate deep image compression technique. The major
contributions of the paper are as follows:

1. The paper discusses feature pyramid based network in
the form of encoder-decoder setup to achieve variable
rate compression.



Figure 1. Illustration of self-supervised attention guided image
compression system. In this figure, the encoder takes the SimCLR
ResNet-50’s group — 1 features as the input. AE and AD stand
for Arithmetic Encoding and Arithmetic Decoding respectively.
Though this architecture depicts two levels of feature coding, it
can be extended to more numbers of levels.

2. The network is trained as a downstream task to learn
the compressible features from the pretrained Sim-
CLR’s representations. The ablation study further
highlights the gain in the rate-distortion curve on us-
ing learned representations.

3. The model attends the salient region using a self at-
tention map over the SIimCLR’s representations to fil-
ter out the least important features. Furthermore, the
placement of self-attention network is also studied to
improve the compression efficiency.

2. Proposed Methodology
2.1. Architecture

Fig. 1 describes the complete architecture of the pro-
posed method. The model primarily consists of four mod-
ules: Encoder £, Quantizer Q, Entropy coder #, and De-
coder D. Given an image x € RT*W*C the pre-trained
SimCLR ResNet-50 in the encoder generates the features
¢. Following [23], these features are being attended by
a self-attention map A = o(¢) to distinguish the distor-
tion prone regions based on the energy score. These feature
maps are further used to generate a multi-scale feature pyra-
mid f;(.A) for variable bit rates. The sequence of layers and
modules responsible for generating a particular bit rate is
referred to as level. The encoder for i level is denoted
by & = fi(A(¢)). These features are quantized, entropy
coded H(Q(&;)). The decoder uses a singleton architec-
ture to decompress the pyramid of features. The decoder
D;(Or:1<k<i) at i level shares the weights O1<k<i—1 with
the decoder network at (i — 1)*" level.

2.1.1 Feature Pyramid Encoder

Instead of naively learning the features from the input im-
age, the encoder uses the learned representations of the Sim-
CLR model to compress the image as a downstream task.
We extract group 1 ResNet-50 features for the compression.
Because of the bit allocation constraints, the representation
may not be efficient enough for compression. So they are
further refined by a self-attention map. The self-attention
module [23] computes energy score using a learned key and
query values. The energy score is normalized using the soft-
max function to generate the corresponding attention coef-
ficients. The self-attention map gives more weight to the
regions, which impacts the perceived quality of the recon-
structed image. The resultant features are convolved down
to different scales. After each convolution layer, General-
ized Divisive Normalization (GDN) [5] is applied to decor-
relate the features before entropy coding.

2.1.2 Quantization and Entropy coding

Recent studies [3, 10] have introduced different stochastic
perturbations to model the quantization in training. The
quantization step is modeled as the additive uniform noise
for non-zero gradient during back propagation. The quan-
tized value of z is computed as z = Q(z) =z+ U (— 3, 3)

The probability distribution p(z) of the quantized latent
representation Z is modeled using non-parametric fully fac-
torized model given by,

i 1 1.,,.
Following [4], the p, is modeled using its cumulative c :
R — [0,1]. The vector ¢’ represents the parameters of
univariate distribution P, |

2.1.3 Decoder

The decoder is framed in such a way that it requires only one
architecture to decode the variable rate compressed data.
For simplicity, the decoder D can be seen as a group of hier-
archical networks with shared weights where each network
D; learns the additional set of trainable parameters 6; along
with the parameters of D;_1 (0.1 <k<k—1) to decode a vari-
able rate data #;. The architecture in Fig. 1 includes two
levels of hierarchical decoding and therefore is capable of
decoding the image at two bit rates. The number of levels
in the feature pyramid can be increased further by adding
subsequent convolutional layers in the encoder.

2.2. Rate-Perception-Distortion Trade-off

The loss function jointly optimizes three parameters: bit
rate, distortion and perceptual loss. The perceptual loss P
is computed as the Mean Squared Error (MSE) between the



features of pre-trained VGG-19 architecture, and the distor-
tion d(.,.) is computed using MSE between ground truth
and reconstructed image. The overall loss function is given
as,

L(0,¢) =ZaiE[d(X, Di(Q(Ei(x;0)); pr<k<i))]

+ Z BiE[P(x, Di(Q(E:(x;0)); pr1<k<i))] + Z viH,;
(2)

In equation 2, the index i represents the i*" level in the
feature pyramid, and the parameters «;, (3; and ~y; are the
Lagrangian multipliers to control the trade-off among dis-
tortion d, perceptual quality P and the bit rate H;, respec-
tively. Since the features in the ' level is the downscaled
version of the (i + 1)*" level, the larger compression ra-
tio is achieved in the i*" level. The Lagrangian multipliers
must be chosen accordingly to control the relative distor-
tions and the perceptual qualities at different levels of the
feature pyramid and should follow the relation, o; < a;41,

Bi < Bit1, Vi > Vit1-
2.3. Bit Rate Inequality

We present the mathematical arguments for achieving
variable bit rate in feature pyramid. For simplicity, we
assume a feature pyramid with intermediate features h,
and ho such that hy = GDN(Why). From Tishby et
al. [16], it is known that H(hy) > H(hs). The equality
occurs if and only if h; and hy have injective mapping.
Due to invertibility of GDN function [2] and W # 0, hy
and hy are one-to-one mapped in feature pyramid and can
potentially lead to equal bit rates. Consider w(t) as the
weights causing equal entropies at ¢! iteration. Follow-
ing [8, 14], the Lo distance of weights w(t) from initial-

3
ization w(0) is upper bounded by radius R = ( ’ii 5)
m2 Ag

with probability at least 1-0, where m,n are number of pa-
rameters in network and number of training samples respec-
tively, and A is the smallest eigenvalue of gram matrix H>°
given by Hp® EUNN(O,I)[(hll)Th{l(uTh’iZO,uTh{ZO)]'
To avoid the equality, the weights must stay outside
of hyper-sphere of radius R.  Solving for W, the
learned weights will lie out of this hyper-sphere for

n3
(Agw\GDN*l(hzmT(hmT)*l—w(O)H%) number of parame-
ters in the network with probability at least 1-6. Alterna-
tively, a network with sufficiently large number of parame-

ters can avoid the bit rate equality in feature pyramid.
2.4. Training

The model is trained using the CLIC 2020 dataset [ 18]
and is evaluated on randomly selected 50 Flickr High-
Resolution images and all 24 Kodak images using distortion

and perceptual quality metrics. Following [4,5], The distor-
tion is measured using MS-SSIM [21] and PSNR in RGB
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Figure 2. Rate Distortion curves for Kodak and Flickr-HR images.
The first row (a-b) illustrates the MS-SSIM variation with respect
to bit rate, and the second row (c-d) demonstrates the PSNR vari-
ation.

space. A no-reference perceptual quality measure, Percep-
tual Index [12, 13], is included to observe the perception-
distortion trade-off.

The architecture is implemented in the Tensorflow en-
vironment and trained for the bit rates in the range of 0.1
bpp and 1.05 bpp. The architecture is optimized for the
loss function described in the previous section. We used
Adam optimizer [ 1] with the parameters §; = 0.99 and
B2 = 0.999 and initial learning rate of 10~3, which is sub-
sequently reduced to 5 x 10~* after MSE loss reaches 330.
The training images are cropped to 240 x 240 with a batch
size of 16.

3. Results
3.1. Qualitative and quantitative analysis

The plots in Fig. 2 quantitatively compare the perfor-
mance for the bit rates in the range of 0.1 and 0.9 bpp. The
rate-distortion performance is compared with JPEG [20],
Islam et al. [9], Johnston et al. [10], Theis et al. [15], Au-
gustson et al. [1], and Yang et al. [22]. It is observed that
our model outperforms the others in terms of average PSNR
and lacks behind Johnston et al. [10] in terms of average
MS-SSIM. The JPEG performs relatively worse at lower bit
rates due to the independent quantization of Discrete Co-
sine Transform (DCT) coefficients. Qualitative analysis is
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Figure 3. Qualitative comparison for Kodak image and Flickr HR
image.

\ bpp  PSNR_MSSSIM _NIQE _PI Ma ]
Kodim-10
Ours 0.295 30.38 0.91 5.22 393 735
Tod [19] 0.297 26.24 0.89 6.07 597 332
JPEG 0.312 26.76 0.87 7.38 4.09 7.18
Johnston [10]  0.291 27.2 0.94 5.59 432  6.96
Flickr-2K 000224

Ours 0.299 30.62 0.93 329 256 3.32
Tod [19] 0.303 26.45 0.87 4.66 3.18 830
JPEG 0.34 26.58 0.86 5.72 449 678
Johnston [10]  0.289 2791 0.92 4.18 262  9.16

Table 1. Quantitative comparison of Kodak image (Fig. 3 (a-d)),
and Flickr HR image (Fig. 3)(e-h). Best results are bolded.

shown in Fig. 3, and the images are compared with vari-
ous models in Table 1 to show the out-performance of the
proposed method in terms of perceptual quality.

4. Ablation studies
4.1. Impact of learned representations

To study the impact of SimCLR’s features, we train an-
other network, called the baseline, with similar architecture
that learns the compressible features directly from the raw
image. This network is trained under the same setting. Re-
ferring to the curves in Fig. 4, even the baseline outperforms
the Toderici in terms of MS-SSIM and shows comparable
performance in terms of PSNR. The baseline is slightly
worse than the SImCLR features based model. Since the
input images contain noise and implicit bias, it requires ad-
ditional complexity in the network to learn good features.
The SimCLR features provide efficient representations that
are already compensated for the irrelevant information in
the training data.
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Figure 4. The curves in the top ((a)-(b)) compare the performance
of the proposed method with and without SImCLR’s features. The
curves in the bottom ((c)-(d)) describe the impact of self-attention
map and its placement in the architecture

4.2. Impact of Self-Attention map

We consider four different setups in the study, including
no self-attention module in the model, self-attention mod-
ule just before the last convolution layer in the decoder,
self-attention module just after SImCLR in the encoder, and
self-attention module in both encoder and decoder. Fig. 4
quantitatively compares the four cases using PSNR and MS-
SSIM. The self-attention map in the decoder degrades the
overall performance of the network. This can be attributed
to the fact that the encoder extracts only relevant features for
learning representations and the decoder learns to maximize
the mutual information between the latent representations
and the output image (Tishby et al. [16]). The addition of
a self-attention module on the decoder’s side unnecessarily
scales representations and reduces the overall performance.
The self-attention map just after the SimCLR features in the
encoder guides bit allocation and consequently reduces the
bit rate significantly.

5. Conclusion

The application of self-supervised learning reduces the
complexity of the network to achieve similar performance.
In addition, we provided theoretical support for the variable
rate compression in the feature pyramid. We experimentally
validate the use of self-attention and its position in the net-
work to improve compression efficiency and perform thor-
ough evaluation and comparison to the popular methods in
traditional and neural image coding.
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