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1. Related Work

Traditional image compression standards, like JPEG [23],
JPEG2000 [19], and HEVC [17] rely on hand-crafted mod-
ules involving discrete cosine transforms or wavelet trans-
forms, quantization, and entropy coding. Traditional codecs
like JPEG2000 compress on a per-instance level with no
learning involved, thereby having poor performance at low
bitrates with artifacts such as blurring, ringing.
To overcome the limitations of hand-crafted modules, sev-
eral compression approaches based on RNNs [21, 22], and
auto-encoders such as [1, 3, 4, 20] have been proposed,
which construct visually pleasing images at high bitrates.
Ideally, we expect compression methods to work effectively
for all bitrates ranging from extremely low to considerably
high depending on the storage budget available to a user.
Some works also deal with variable-rate image compres-
sion [6, 8, 10, 22]. While [6] enables variable bitrate during
test time, it is not very flexible as one may not have the
knowledge of the knob parameters, λ and ∆, required to at-
tain the desired bitrate. We propose a single model for a
wide range of bitrates that ensures photo-realism, maintains
the visual quality as per the bit budget allocated while facil-
itating the user with an explicit control on desired bitrate.
GANs [9] have led to rapid progress in compression algo-
rithms they can generate photo-realistic images at extremely
low bitrates [2,14]. In [2], the authors successfully generate
photo-realistic reconstructions by selectively compressing
a random region in the image, and fully synthesizing other
regions in the decoded image using GANs and a semantic
label map. However, these methods synthesize parts of the
image that may be completely different from the contents
of original image. A compression algorithm is expected not
to synthesize the contents of the image; thus our method
avoids the full synthesis of any part. We use HiFiC [14], a
GAN-based algorithm, as a baseline in our experiments.
Previous works such as [5, 11, 13, 16] assume that only a
small region of the entire image is relatively more impor-
tant than the other regions and is, therefore, the main area

of focus. Li et. al. [11] also showed that the local informa-
tion content varies spatially across the image, and the bitrate
of different parts of an image should be adapted to local
content. Inspired by this and the success of photo-realism
of GAN reconstructions, we develop our auto-encoder and
GAN-based hybrid model which facilitates a simpler and
explicit bitrate control to user, and a differential bit allo-
cation to different regions in the image guided by a user-
provided importance map in contrast to a semantic label
map used by [2]. We further propose a novel Equivalence
Distortion Loss to maintain the output bitrate as close as
possible to the target bitrate both in totality and across re-
gions within an image.

2. Implementation Details
We provide a Pytorch-like pseudocode for the forward pass
of our algorithm in Figure 1. We train our model with a
discriminator. We utilize 4 Tesla V100 GPUs with 32 GB
memory. We use Adam optimizer with learning rate of
0.0001 for both the model parameters and the discrimina-
tor parameters. We train all our models for 24 epochs and
use a multi-step learning rate scheduler with a gamma of
0.1 and milestones at [9, 15, 19, 22]. Our training dataset
consists of close to 24, 100 images. We train with a batch
size of 16 and training one variant of our model takes close
to 8 hours. A screenshot of our user interface is displayed
in Figure 2. 1

3. Additional Loss Functions
VGG Feature Loss: I and Ĩ are both fed into the pre-
trained VGG-16 network, and the features computed by
the network at various intermediate layers are compared
using an L1 Loss. In our method, features are extracted
from i = 1...4 layers in the VGG network and the cor-
responding L1 losses are aggregated to Lvgg given by,

1A demo video of our user interface is provided in
https://drive.google.com/file/d/1tLuDyLoU6wt9uMSdgUVqc3KGH5J1xs-
a/view
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# Input I[B, C, H, W] – batch of images

I = torch.cat([I, pos_encoding], dim = 1)

# encoder - part 1
ec = encoder_1(I)  # [B, 64, H, W]

# importance map
im = importance_map(ec) # [B, 1, H/4, W/4]
mask = create_mask(im) # [B, 8, H/4, W/4]

# encoder – part 2 
ec = encoder_2(ec)  # [B, 8, H/4, W/4]

# binarization
binary = binarizer(ec) # [B, 8, H/4, W/4]
ec = binary x mask  # [B, 8, H/4, W/4]

# decoder
dc = decoder(ec)  # [B, C, H, W]

return dc, im
 

Figure 1. Pseudocode for forward pass of our algorithm

Figure 2. Our User Interface: Users can enter the relative impor-
tances for each region, and provide a desired bitrate based on their
budget. If users are not satisfied with the reconstruction, they can
iteratively adjust the importance.

Lvgg =
∑4

i=1 L1(VGGi(I),VGGi(̃I))
where VGGi(I) gives the features computed by VGG
network on input image I extracted at layer i.

Hinge Loss: Instead of the standard GAN loss, we use
the hinge loss term in our loss function which is shown to

(a) Input Image (b) User Input Map (c) Learned Map

Figure 3. User input importance values (b) are [0.55, 0.3, 0.15]
for face, hair, background respectively. In the learned importance
map (c), the values get distributed in the corresponding regions.
It is evident that pixels with high texture or edges within a region
get greater weightage. The average learned importance values are
[0.572, 0.293, 0.145], thus showing that the input importance map
was used effectively as a guidance while ensuring parts of greater
variation within a region (eyes) have higher importance compared
to smoother ones (cheeks).

produce better photorealistic samples [12, 15, 24].

GAN Feature Loss: Features learned by the discriminator
for both of its inputs, i.e., the original image and the fake
image, are compared with each other using L1 Loss. This
enforces the reconstructed image to be visually close to the
input image so that the discriminator gets fooled and makes
mistakes in its task of classifying whether an image is orig-
inal/fake. Let D denote the discriminator. Then,

Lgan = L1(D(I),D(̃I)) (1)

Equivalence Distortion (ED) Loss Function: Here is the
mathematical formulation of the terms described in the ED
Loss in the main paper (section 2.3). Let Lmse and Lssim

denote the mean-squared error and MS-SSIM between in-
put and reconstructed images.

Lmse = ma ⊙ ||I − Ĩ||2 (2)

Lssim = 1− MS-SSIM(I, Ĩ) (3)

Then, the distortion loss LD is given by:

LD = λ1Lmse + λ2Lssim (4)

where λ1 = 1.25 and λ2 = 0.1
Let LE denote the equivalence loss obtained when impor-
tance values of different regions between the user input im-
portance map and learned importance map are compared.
Then,
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where λ3 = 0.9, h is the number of regions in an image, α
is a smoothing constant with value 10−8 and (mi

∗)avg is the
average importance to region i. Figure 3 further shows the
effectiveness of the ED Loss function in making the learned
importance map tightly follow the user-input importance
values, thus allowing the output bitrate to be close to the
input bitrate.

4. Architecture Details
In this section, we provide the architecture details of var-
ious components in our model. Table 1 contains the lay-
ers of the first part of our encoder that takes in the input
image concatenated with importance map. Each convolu-
tion layer consists of a reflection padding and a 2D convo-
lution, along with a Leaky ReLU activation. Table 2 con-
tains the importance map network with its individual com-
ponents, which takes the output of the first part of encoder
as its input. Components of second part of the encoder are
shown in Table 3. Decoder consists of ConvTranspose2D
layers with kernel stride as (2, 2) and stride as (2, 2) and
residual blocks. The decoder architecture is shown in Table
5. Residual blocks are used in each of our model compo-
nents, and the layers of residual block are shown in Table
4. Multiscale-Discriminator, shown in Figure 4, consists
of four convolution blocks operating at progressively lower
scales.

Layer In Dimensions Out Dimensions

conv 0 [C, H, W] [64, H, W]
conv 1 [64, H, W] [128, H/2, W/2]
conv 2 [128, H/2, W/2] [256, H/4, W/4]
res block 0 [256, H/4, W/4] [256, H/4, W/4]
res block 1 [256, H/4, W/4] [256, H/4, W/4]

Table 1. Layers of Encoder - Part 1

Layer In Dimensions Out Dimensions

layer 0 [256, H/4, W/4] [512, H/4, W/4]
im res block 0 [512, H/4, W/4] [512, H/4, W/4]
layer 1 [512, H/4, W/4] [1024, H/4, W/4]
im res block 1 [1024, H/4, W/4] [1024, H/4, W/4]
layer 2 [1024, H/4, W/4] [1, H/4, W/4]

Table 2. Layers of Importance Map Network

Layer In Dimensions Out Dimensions

conv 3 [256, H/4, W/4] [512, H/4, W/4]
res block 2 [512, H/4, W/4] [512, H/4, W/4]
res block 3 [512, H/4, W/4] [512, H/4, W/4]
conv 4 [512, H/4, W/4] [8, H/4, W/4]

Table 3. Layers of Encoder - Part 2; where C/n2 = 8/16 = 0.5

Layer In Dimensions Out Dimensions Kernel Size Stride

layer 0 [C, H, W] [C, H, W] (3, 3) (1, 1)
layer 1 [C, H, W] [C, H, W] (3, 3) (1, 1)

Table 4. Each Residual Block

Layer In Dimensions Out Dimensions

deconv 0 [8, H/4, W/4] [512, H/2, W/2]
res block 0 [512, H/2, W/2] [512, H/2, W/2]
res block 1 [512, H/2, W/2] [512, H/2, W/2]
dconv 1 [512, H/2, W/2] [256, H, W]
res block 0 [256, H, W] [256, H, W]
res block 1 [256, H, W] [256, H, W]
dconv 2 [256, H, W] [128, H, W]
dconv 3 [128, H, W] [3, H, W]

Table 5. Layers of Decoder

5. Analysis of Input Bitrate

In this section, we analyze how the effective input bitrate
varies as user-provided input bitrate t and relative impor-
tance values change. Suppose we have an image I of
size (H,W ), and compressed latent representation of size
(H/n,W/n) with C channels to hold the bits. Without
loss of generality, let us consider three regions with areas
A1, A2, A3 in the original image, and A

(r)
1 , A

(r)
2 , A

(r)
3 in

the latent representation. Let the proportion of their areas
in the image be k1, k2, k3. During training, we sample in-
put bitrate t and importance values [p1, p2, p3] from Uni-
form distribution and Dirichlet distribution respectively as
a proxy for user-provided values, given by t ∼ U(0.01, 0.5)
and p ∼ Dir([1.0, 1.0, 1.0])
Our goal is to obtain weights (absolute importance values)
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Figure 4. Multiscale Discriminator takes in the input image con-
catenated with input importance map, and reconstructed image
concatenated with learned importance map. It predicts which of
the images is real or fake.

[w1, w2, w3], each of which corresponds to the fraction of
non-zero bits in A

(r)
i C. Thus, we require each wi ≤ 1 and

t×H ×W = w1A
(r)
1 C + w2A

(r)
2 C + w3A

(r)
3 C.

The right hand side of equation represents the total bits in
latent representation 2. Simplifying, we get

t = (w1k1 + w2k2 + w3k3)×
C

n2
(11)

When all the weights are equal to 1, we get the maximum
bitrate possible via our method, that is, C/n2. In all our
models, we ensure that C/n2 is equal to 0.50. For any other
combination of weights, we get a bitrate t less than 0.50.
Let us assume that the relative importance values corre-
spond to the relative proportions of weights. Then, t =
k(p1k1 + p2k2 + p3k3) × C

n2 , k = t
C/n2×(

∑3
i=1 piki)

and

wi = min(1,
tpi

C/n2 × (
∑3

i=1 piki)
) ∀i (12)

Since t ≤ 0.5, pi ≤ 1, C/n2 = 0.5, and
∑3

i=1 piki ≤ 1,
the value of wi can go higher than 1, making it necessary to
clip wi. Due to such clipping, we sometimes don’t match
the input bitrate t exactly.
While our method of controlling the output bitrate is eas-
ier as compared to previous methods, we suffer a residue
∆t for high input bitrates to incorporate user-guided impor-
tance values. We intend to make the bounds tighter in future
work. One way is to allocate residual bits to other regions
in inverse proportion of their areas.

6. Discussion on Input Bitrate
In this section, we explain our choice of sampling with Uni-
form distribution for target bitrate and Dirichlet distribution

2The formula for bitrate or bits-per-pixel is given by, t =

total bits in latent rep
total number of pixels =

w1A
(r)
1 C+w2A

(r)
2 C+w3A

(r)
3 C

HW

for relative importance values. We wanted a generative ap-
proach for training that represents how a user might interact
with a compression system - by providing a target bpp and
a choice of relative importance values. We provide three
cases of data generation process during training.

6.1. Case (1)

We sample the raw weights [w1, w2, w3] for input impor-
tance map from a Unif(0, 1) distribution. We know that the
effective input bpp is given by

(w1k1 + w2k2 + w3k3)×
C

n2

We ensure that the effective input bpp is always less than
or equal to C/n2 with our current sampling procedure. We
sample the CelebA-HQ faces dataset for multiple epochs
and take an average across epochs to get the distribution of
effective input bpps and raw importance values. The distri-
bution is plotted in Figure 5. It is evident that the weights
are all uniform. However, the effective input bpp peaks
around 0.25 and tapers on both the extremes. This is ex-
plained by the fact that the effective input bpp is the sum of
three scaled random uniform variables - and is expected to
look close to a Normal distribution [7]. So, our models are
trained well for bpps in the range [0.15, 0.35] but perform
poorly for bpps outside this range.

6.2. Case (2) - No Clipping

Here, we explicitly sample the target bpp from a Uniform
distribution and relative importance values from a Dirichlet
distribution. A Dirichlet distribution with concentration pa-
rameters α = [1.0, 1.0, 1.0] ensures that all relative impor-
tance triplets are sampled with equal probability. As shown
in Figure 6, we do achieve uniformity in the effective in-
put bpps ensuring that we can train the models well for all
bpps; but the weights for importance values go out of the
[0, 1] range. For example, the weight for hair region takes
a maximum value of 7.7 for some images, and the weight
for background region takes a maximum value of 6.4. Note
that the equation for weights is given by,

wi =
tpi

C/n2 × (
∑3

i=1 piki)
∀i

When t is large, and
∑3

i=1 piki is small, weights can shoot
much higher than 1. For instance, when t = 0.4, sampled
relative importance values are [0.5, 0.9, 0.35], and the pro-
portion of areas are [0.6, 0.005, 0.395], the weight for hair
region ends up being 13.27, larger than 1. Such weights
don’t make sense when computing the channel masks in our
model.
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Figure 5. Case (1): Sampling each raw importance value (weight) from a uniform distribution
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Figure 6. Case (2): Sampling the target bpp from a uniform distribution and relative importance values from a Dirichlet Distribution with
concentration parameter = 1.0; no clipping of weights
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Figure 7. Case (3): Sampling the target bpp from a uniform distribution and relative importance values from a Dirichlet Distribution with
concentration parameter = 1.0; and clipping the weights. We use this method in the current work

6.3. Case (3) - With Clipping

We sample the weights similar to Case (2), but clip the
weights. This again skews the effective input bpp distri-
bution - we see a tapering for higher target bpps. This is
expected given the clipping of weights. Higher target bpps
(> 0.4) typically lead to weights larger than 1, which in turn
get clipped, leading to a tapering at one extreme. So, our
models are well trained for bpps in the range [0.05, 0.35],
which is larger than Case (1), but perform poorly for higher
bpps. The deviation from the expected y = x line at the
extremes is higher. This phenomenon can also be seen in
other evaluation metrics, where the performance drops for

larger bpps.

6.4. Residual Bitrate ∆t

In Figure 8, we keep p2 fixed at 3 different values
[0, 1/3, 2/3] and vary p1 in the range [0, 1 − p2]. We ob-
serve that low bitrates (≤ 0.25) have ∆t = 0. Higher bi-
trates coupled with extreme relative importances get clipped
and lead to a gap. For instance, in the first plot, when
[p1, p2, p3] = [0.1, 0.0, 0.9] at input bitrate t = 0.35, we
see that ∆t is approximately 0.15. In the third plot, the
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Figure 8. Plot of ∆t vs p1 for different values of input bitrate (bpp) t. In each of these plots, we keep the relative importance p2 fixed, and
vary p1 in the range [0, 1− p2]

equation for ∆t is given by,

∆t =

{
0 if t ≤ 0.25

2t/3− 1/6 if t > 0.25
(13)

because min(C/3n2, tpi) for (i = 1, 3) is always equal to
tpi

3, and min(C/3n2, tp2) is equal to 1/6 for t > 0.25.

7. Classes in Cityscapes Dataset
Cityscapes dataset comprises of images of street scenes cap-
tured in different cities. Each street scene has a variety of
objects. There are in total 34 categories of objects which
are recognized in the dataset. For the purpose of our exper-
iments on Cityscapes, we divide the 34 classes of objects
into 5 broad classes,

• Human: person, rider

• Vehicle: car, truck, bus, on rails, motorcycle, bicycle,
caravan, trailer

• Object: pole, pole group, traffic sign, traffic light

• Construction: building, wall, fence, guard rail,
bridge, tunnel

• Others: road, sidewalk, parking, rail track, vegetation,
terrain, sky, ground, dynamic, static

8. Additional Results
8.1. Model Variations

We experiment with different values of C and n that can
give us a maximum bitrate of 0.5. Figure 10 depicts the
performance of those model variations on PSNR and MS-
SSIM. We also experiment a variation all these models with

3Note that C/n2 = 0.5

positional encodings [18], which get concatenated to the in-
put image along with the user input importance map. We
use the Gaussian fourier feature mapping to map our pixel
coordinates to a Fourier space. Let v = [x, y] and γ(v) be
its positional encoding, then

γ(v) = [cos(2πBv), sin(2πBv)]
T (14)

where each entry in B ∈ Rm×d is sampled from a Nor-
mal Distribution N (0, σ2) with σ = 0.5. After a detailed
study, we empirically conclude that the proposed model
with C = 8 channels and a n2 = 16 factor reduction, main-
taining C/n2 ratio to 0.5, gives the best performance on our
dataset (see Figure 8). Hence, all the further experiments
and results are reported on the same model.

8.2. Gains from User Guidance

We test our hypothesis of controlling output bitrate (tout)
via user-guided relative importance values by considering
two alternatives that do not have any user guidance or seg-
mentation masks: (a) Identity mapping which is equivalent
to removing both LE term (Equation 5) and importance
map network and directly replacing the learned importance
map with a constant map of value tn2/C (Equation 12)
where t is the input bitrate, (b) No-ROI mapping which is
equivalent to setting LE = Lwhole and replacing the input
importance map with a constant map of value tn2/C. Note
that (a) and (b) serve as ablations for importance map net-
work and ED Loss respectively.
While (a) is the best at tracking input bitrate t exactly, it
performs poorly on all quantitative metrics as seen in Table
6 with FID values taking upto 98.00 at t = 0.05. Since the
learned map is constant, bits are not allocated contextually
resulting in poor performance especially at low bitrates.
Importance map network is incorporated in (b), with an ad-
ditional loss Lwhole on tout to make it closer to t. From the
graph in Figure 11, we see that (b) is not able to track t,
and tout hovers around 0.216 with a small increasing trend.
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Figure 9. Comparison of our proposed method Our-D on Cityscapes dataset against baselines across (a) PSNR, (b) SSIM, (c) FID, and (d)
KID metrics (SSIM and FID in the main paper also). Models are evaluated at different bitrates ranging from 0.05 to 0.5 (maximum bitrate
possible).

User Input
Bitrate (t)

PSNR (↑) R0 PSNR (↑) FID (↓)
Identity

(a)
No ROI

(b)
With ROI

(Our)
Identity

(a)
No ROI

(b)
With ROI

(Our)
Identity

(a)
No ROI

(b)
With ROI

(Our)
0.05
0.15
0.30

10.8134
23.3128
24.9450

25.6913
25.7425
25.7712

25.8777
26.4593
27.5145

12.2543
23.7337
25.1587

26.0890
26.1675
25.3770

26.6052
27.1736
28.1576

98.34 (± 4.821)
78.73 (± 2.722)
64.54 (± 2.082)

38.99 (± 0.440)
40.21 (± 0.622)
39.12 (± 0.483)

18.23 (± 0.394)
15.29 (± 0.343)
13.85 (± 0.295)

Table 6. Quantitative comparison of alternatives (a) Identity mapping, (b) No-ROI mapping for controlling output bitrate without any user
guidance. Values are computed on CelebA test set where R0 corresponds to face-region. (↑) arrow indicates that higher values are better.

User Input
Bitrate

R1 PSNR ↑ R2 PSNR ↑ SSIM ↑ KID ↓
Identity

(a)
No ROI

(b)
With ROI

(Our)
Identity

(a)
No ROI

(b)
With ROI

(Our)
Identity

(a)
No ROI

(b)
With ROI

(Our)
Identity

(a)
No ROI

(b)
With ROI

(Our)

0.05 12.1932 25.3386 24.1934 11.2482 26.8067 27.3108 0.4650 0.8642 0.8531
0.4029
(0.016)

0.0244
(0.006)

0.0054
(0.009)

0.15 23.2416 25.3370 24.9001 25.9152 26.8291 27.5653 0.8374 0.8643 0.8840 0.0280
(0.007)

0.0239
(0.005)

0.0028
(0.006)

0.30 24.6950 25.4280 25.9472 26.0419 26.9231 28.6331 0.8540 0.8650 0.9045 0.0347
(0.009)

0.0241
(0.006)

0.0018
(0.006)

Table 7. Quantitative comparison of alternatives (a) Identity mapping, (b) No-ROI mapping for controlling output bitrate without any
user guidance. Values are computed on CelebA test set where R1, R2 correspond to hair and background region respectively. (↑) arrow
indicates that higher values are better.

Since t is uniformly distributed (Section 5), E(t) = 0.245
and gradients from the averaged-Lwhole over entire train set
push the network towards giving a tout close to E(t) lead-
ing to values in the range [0.20, 0.24]. While the values
in Table 6 look much better as compared to (a), note that
(b) uses additional bits worth ∼ 0.1 in [0.01 - 0.15] range.
Despite taking up additional bits, the performance is worse
compared to our method. For instance at t = 0.05, our
method provides a +20.12 reduction on FID while taking
lesser bits (tout = 0.07). Again, due to the lack of region-
specific contextual information, bits are allocated poorly in
method (b) as seen in the learned map in Figure 12. Our
method gives a +1.6 gain in R0 PSNR at t = 0.15 in spite
of allocating fewer bits to R0 (face).

These findings verify the benefits of using our method
which incorporates user-guided ROI via ED Loss, and
is able to divert bits to useful locations within a region

(like high texture) while staying within the limits of user-
provided bit budget (t). From Figure 11, we see that our
method is able to track t very well in the range of [0.07 -
0.42] but tapers at extremes due to clipping (discussed in
Section 5). Quantitative results from Table 6 indicate the
superior performance of our method at all bitrates owing
to a much-improved bit allocation. From Figure 12, visual
quality of reconstructed images is strikingly better than the
other two cases with the learned map containing bits at re-
gions of high variability. Thus, we have shown that user-
guided relative importance values help in optimally lever-
aging the available bit budget (unlike (b)) by allocating bits
to appropriate locations and maximising the reconstructed
image quality (unlike (a)), confirming our hypothesis.

Table 7 shows additional results comparing alternatives that
do not consider user guidance. It is evident that our method
outperforms both the alternatives in all the metrics. De-



Figure 10. Different architecture explorations to achieve a Max-
imum bpp of = 0.5. We find that (C = 8, n2 = 16) without
position encodings is the best combination

Figure 11. Variation of Out-
put bitrate as t increases from
0.01 to 0.5. Without-ROI cor-
responds to no-ROI mapping;
With-ROI corresponds to our
method with user guidance.

Input Image (a)
tout = 0.15

PSNR = 20.24
SSIM = 0.836

(b)
tout = 0.21

PSNR = 23.32
SSIM = 0.864

(our)
tout = 0.15

PSNR = 26.74
SSIM = 0.884

Figure 12. Qualitative comparison of reconstructed images and
their learned maps from alternatives at t = 0.15: (a) Identity map-
ping, (b) No-ROI mapping, (our) method is with user-guided map

spite taking much fewer bits for each region, the region-
wise PSNR is higher in both hair and background regions.
Identity mapping at low bitrates is very bad owing to the
lack of importance map network; SSIM and KID values
are significantly lower than other two methods. No-ROI
mapping performs slightly better than our method in R1

PSNR at t = 0.05 and t = 0.15 because it does not stay
within the limits of bit budget. Output bitrate tout tracks
the input bitrate exactly for our method, whereas No-ROI
mapping alternative fixates around tout = 0.216. Thus, at
t = 0.05, our method uses only tout =∼ 0.05 to give R1

PSNR of 24.1934 points, whereas No-ROI alternative uses
tout = 0.216 to give R1 PSNR of 25.3386 (+1.1 gain). To
iterate, this happens because No-ROI mapping does not stay

within the desired bit budget limits.

8.3. Quantitative Comparison with Baselines on
Cityscapes

Since the maximum attainable bitrate in our scenario is
0.5, we experiment with the following values of bitrates -
[0.05, 0.1, 0.15, 0.23, 0.35], while keeping the relative im-
portance values constant and equal ([0.2, 0.2, 0.2, 0.2, 0.2]
for Cityscapes dataset) to allow for comparison against the
baselines. From Figure 9, we see that our method Our-D
might be performing inferior to the baselines on PSNR and
KID. We intend to work on this in our future work. De-
spite of the low numbers on quantitative metrics, our model
is preferred at par with the baselines by the users, as con-
cluded from the human evaluation. Additionally, it is im-
perative to note that both our baselines - HiFiC [14] and
BPG require either a new model to be trained for each of the
target bitrates (low, medium and high regimes for HiFiC)
or need manual control over the quality parameter (-q pa-
rameter in BPG). In both the cases, the user can’t estimate
the output bitrate right at the start of compression algorithm
and has to do multiple iterations to achieve the desired bi-
trate whereas our model facilitates the user with an explicit
control over the target bitrate and subsequently, adheres to
the target set by the user during the compression. Further-
more, our model doesn’t need to be retrained for different
target bitrates - it is a single model that works for a range
of bitrates, thereby reducing the training computation cost
incurred to train a model for each new bitrate.

(a)

(b)

Figure 13. Comparison of PSNR of regions as we vary relative
importance values for (a) faces (↑) and background (↓) in CelebA
keeping it fixed for hair (b) construction (↑) and vehicle ↓) regions
in CityScapes while keeping it fixed for the other classes. Note
that PSNR decreases for all bitrates for background and vehicles
due to decreasing relative importance and increases for faces and
construction respectively



8.4. Varying User-Input Importance at Multiple Bi-
trates

Figure 13 shows the trend for PSNR values for different
object classes when the user-input relative importance val-
ues are varied at different bitrates. Figure 14 shows some
more qualitative examples. We present the learned impor-
tance maps and the reconstructed images by our model at
different bitrates and across different user-specific impor-
tance values. The gradual variation of the increasing im-
portance given to face as against the background (specified
by the user input importance), is clearly evident in all the
learned importance maps of the images (refer to the impor-
tance map rows at each bitrate). The resulting impact on
the reconstruction can also be observed, for instance, fa-
cial detailing like wrinkles on forehead in (ii), dimples on
cheeks in (iii) are better preserved with a higher importance
to face (column (e)) at the same bitrate. Simultaneously,
the background objects which are specified un-important by
the user, are not reconstructed perfectly. This can be ob-
served through the background in (iv) and the earrings of
the women in (i), (iii). This effect is also measured quanti-
tatively through the region-wise PSNR values of Face and
Background. Note the trend of increasing PSNR of face and
decreasing PSNR of the background in each row.
Similarly, we can see some more qualitative examples at
different target bitrates and relative importance values for
Cityscapes Dataset in figure 17. As the user input relative
importance of Construction region is increased ((a) to (c)
in each row), it gets allocated more bit budget which is re-
flected in the learned importance maps while the bit budget
to vehicle region gets decreased as is visible in the exam-
ples on moving from left to right. Effects of this change
are clearly reflected in the examples: the cars in front of
white house in (i) and the one near umbrella in (ii) degrade
sharply while the windows and other features in the build-
ings on right become more sharper as we go from (a) to (c);
the red slant roof in (iii) is best reconstructed in (c) as com-
pared to (a) and the red car gets smudgy in (iv) while the
features in the buildings on right get sharper and better as
we move from (a) to (c). The decreasing trend in the re-
ported region wise PSNR values of vehicle and increasing
trend for construction further validates our visual observa-
tions.
Observing the importance maps column-wise also shows
the effect of bitrate on the importance map weights. As
we allot more bits to the images, the weights given to the
regions in the importance map also increases (visualized
through darker blue color as we go down the column). For
the reconstructions at 0.4 input bpp, we observe that the
reconstructed images do not make use of the entire allot-
ted bitrate budget. The generated images are of high visual
quality, but at a lower bitrate than provided.

8.5. Human Evaluation

We pay our annotators at 10 dollars per hour. In the
third survey, we examine how well our algorithm incor-
porates user importances by displaying three images with
low/equal/high immportance to face/vehicle region at vari-
ous bitrates. We ask the annotators to pick the image that
has the best reconstruction of face/vehicle region. This en-
ables us to obtain the preferential alignment of user impor-
tances with model reconstructions. We find that our model
produces a superior output when the specified region is
given higher importance, which also aligns with the percep-
tion of users (annotators). For all bitrates and dataset types,
the specified region with ”high” importance is perceived to
have the best reconstruction. While Survey-2 shows that our
method fares better at reconstructing specified region with
high importance as compared to baseline, this survey shows
the ability of our method to align with user preferences.

8.6. Qualitative Comparison with Baselines

Figure 15,16, 18 and 19 present the qualitative comparison
of compressed images with our proposed model against the
baselines BPG and HiFiC. In Figure, 15, we compare the re-
constructions at extremely low bitrates. It is visually evident
that our model produces compression of better quality even
at such low bitrates of 0.06 and 0.095. Similarly, in figure
18 we carefully observe that BPG inherently does smooth
out a lot of regions especially in the vegetation which some-
times hides the objects in its foreground (the circle in traf-
fic sign pole almost gets lost in the smoothing of vegeta-
tion). However, due to region wise bit allocation we tend to
maintain some texture in vegetation and hence perform at
par with BPG in terms of SSIM. Note that HiFiC model is
trained for 3 specific variations - low, med, high and hence,
the lowest bitrate attained through this baseline is around
0.2. Hence, we couldn’t compare against this model at low
bitrates. Figure 16, 19 show the comparison with the results
from HiFiC at 3 levels. We also report the closest attainable
image through BPG. It is observed that BPG results are not
very good visually at low bitrates. When compared with
HiFiC, our model gives results on par with it for CelebA
and close enough for Cityscapes (intend to improve in fu-
ture work). Our model produces reconstructions with rea-
sonably high SSIM as compared to our baselines. Also, the
most important advantage is that our model is trained only
once, while the baselines had to be trained multiple times to
obtain reconstructions at varied bitrates.



Class Pref (→)
Input BPP (↓) Dataset Low Equal High

Low (0.2)
CelebA
Cityscapes

15
10

15
14

13
22

Medium (0.3)
CelebA
Cityscapes

11
12

14
19

18
16

High (0.4)
CelebA
Cityscapes

10
11

15
15

20
20

Table 8. Human Evaluation Survey Results. Values correspond to
respondent counts for the query: ”Which image reconstructs the
face/vehicle region better?”
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Original Image (a) (b) (c) (d) (e)

(i) I/p bpp = 0.05

Pface - 25.06
Pbkg - 27.35
0.0681 bpp

Pface - 25.19
Pbkg - 26.27
0.0661 bpp

Pface - 25.38
Pbkg - 26.34
0.0665 bpp

Pface - 25.48
Pbkg - 25.76
0.0691 bpp

Pface - 25.88
Pbkg - 26.32
0.0734 bpp

(ii) I/p bpp = 0.10

Pface - 23.60
Pbkg - 25.18
0.1096 bpp

Pface - 24.57
Pbkg - 25.24
0.1037 bpp

Pface - 25.35
Pbkg - 24.36
0.1043 bpp

Pface - 25.60
Pbkg - 24.23
0.1073 bpp

Pface - 26.15
Pbkg - 24.06
0.1177 bpp

(iii) I/p bpp = 0.20

Pface - 26.99
Pbkg - 28.06
0.2008 bpp

Pface - 28.14
Pbkg - 28.17
0.2003 bpp

Pface - 28.52
Pbkg - 28.15
0.2017 bpp

Pface - 29.18
Pbkg - 27.42
0.2001 bpp

Pface - 29.30
Pbkg - 26.72
0.2001 bpp

(iv) I/p bpp = 0.30

Pface - 27.18
Pbkg - 27.55
0.283 bpp

Pface - 28.25
Pbkg - 27.87
0.2953 bpp

Pface - 29.02
Pbkg - 27.91
0.301 bpp

Pface - 29.05
Pbkg - 27.70
0.3025 bpp

Pface - 29.08
Pbkg - 25.57
0.2749 bpp



(v) I/p bpp = 0.40

Pface - 27.16
Pbkg - 33.91
0.3428 bpp

Pface - 27.90
Pbkg - 34.47
0.3766 bpp

Pface - 28.31
Pbkg - 35.06
0.4007 bpp

Pface - 28.23
Pbkg - 35.21
0.3761 bpp

Pface - 28.45
Pbkg - 33.11
0.3427 bpp

Figure 14. Reconstructions and Learned Importance maps obtained by our model at different bitrates (ranging from 0.05 to 0.4) and user-
input importance maps. We present the user-input importance map variations of face, hair, background (p1, p2, p3) at (a) [0.1, 0.33, 0.57]
(b) [0.2, 0.33, 0.47] (c) [0.34, 0.33, 0.33] (d) [0.44, 0.33, 0.23] (e) [0.54, 0.33, 0.13]

(a) Original Image (b) BPG

Ptotal - 26.93, SSIM - 0.6888
0.067 bpp

(c) Our Model (equal importance)

Ptotal - 26.007, SSIM - 0.879
0.0628 bpp

Ptotal - 28.028, SSIM - 0.774
0.0953 bpp

Ptotal - 25.736, SSIM - 0.874
0.095 bpp

Figure 15. Qualitative comparison with BPG at extremely low bitrates. The PSNR and SSIM of the compressed images and the bitrates
are reported.



Original
Image

(a)
BPG

Ptotal - 27.73, SSIM - 0.758
0.2032 bpp

(b)
HiFiC

Ptotal - 27.5, SSIM - 0.781
0.221 bpp (low)

(c)
Our Model

Ptotal - 24.963, SSIM - 0.838
0.2026 bpp

Ptotal - 32.595, SSIM - 0.872
0.279 bpp

Ptotal - 30.475, SSIM - 0.875
0.338 bpp (med)

Ptotal - 27.44, SSIM - 0.904
0.2987 bpp

Ptotal - 30.193, SSIM - 0.811
0.363 bpp

Ptotal - 28.71, SSIM - 0.811
0.482 bpp (high)

Ptotal - 25.853, SSIM - 0.840
0.4371 bpp

Figure 16. Qualitative comparison of baselines against our model(c). We compare against (a)BPG and (b)HiFiC at different bitrates. The
PSNR and SSIM are reported for each of the compressed reconstruction.



Original Image (a) (0.1, 0.6, 0.1, 0.1, 0.1)) (b) (0.1, 0.4, 0.1, 0.3, 0.1) (c) (0.1, 0.1, 0.1, 0.6, 0.1)

(i) For Target BPP : 0.05

PSNRConstruction - 23.51
PSNRVehicle - 23.47

(0.0754 bpp)

PSNRConstruction - 23.74
PSNRVehicle - 23.30

(0.0734 bpp)

PSNRConstruction - 23.94
PSNRVehicle - 22.78

(0.0794 bpp)

(ii) For Target BPP : 0.1

PSNRConstruction - 20.72
PSNRVehicle - 20.89

(0.1099 bpp)

PSNRConstruction - 21.63
PSNRVehicle - 20.80

(0.1102 bpp)

PSNRConstruction - 22.08
PSNRVehicle - 20.54

(0.1107 bpp)

(iii) For Target BPP : 0.2

PSNRConstruction - 24.77
PSNRVehicle - 25.36

(0.1842 bpp)

PSNRConstruction - 25.23
PSNRVehicle - 25.17

(0.2038 bpp)

PSNRConstruction - 25.44
PSNRVehicle - 24.12

(0.203 bpp)

(iv) For Target BPP : 0.3

PSNRConstruction - 21.69
PSNRVehicle - 22.03

(0.247 bpp)

PSNRConstruction - 21.93
PSNRVehicle - 21.53

(0.2735 bpp)

PSNRConstruction - 22.07
PSNRVehicle - 20.24

(0.203 bpp)



(v) For Target BPP : 0.4

PSNRConstruction - 26.57
PSNRVehicle - 26.88

(0.2915 bpp)

PSNRConstruction - 26.75
PSNRVehicle - 26.59

(0.3291 bpp)

PSNRConstruction - 26.96
PSNRVehicle - 26.13

(0.2652 bpp)
Figure 17. Reconstructions and Learned Importance maps obtained by our model at different bitrates (ranging from 0.05 to 0.4, 0.15
shown in main text) and user-input relative importance values (p1, p2, p3, p4, p5) for Construction (p4) and Vehicle (p2) class keeping
other regions constant

(a) Original Image (b) BPG

Ptotal - 30.38, SSIM - 0.8452
0.0559 bpp

(c) Our Model (equal importance)

Ptotal - 25.49, SSIM - 0.8609
0.0599 bpp

Figure 18. Qualitative comparison with BPG at an extremely low bitrate of 0.05 bpp. The PSNR and SSIM of the compressed images and
the corresponding bitrates are reported.

Original Image (a) BPG

Ptotal - 34.98, SSIM - 0.9188
0.1268 bpp

(b) HiFiC

Ptotal - 27.70, SSIM - 0.7189
0.164 bpp (low)

(c) Our Model

Ptotal - 27.91, SSIM - 0.9012
0.1463 bpp

Ptotal - 38.14, SSIM - 0.9475
0.280 bpp

Ptotal - 27.41, SSIM - 0.699
0.288 bpp (med)

Ptotal - 28.66, SSIM - 0.9025
0.2297 bpp

Ptotal - 38.37, SSIM - 0.9560
0.3449 bpp

Ptotal - 28.30, SSIM - 0.7727
0.404 bpp (high)

Ptotal - 28.43, SSIM - 0.911
0.3496 bpp

Figure 19. Qualitative comparison of baselines against our model(c). We compare against (a)BPG and (b)HiFiC at different bitrates. The
PSNR and SSIM are reported for each of the compressed reconstruction.


