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Abstract

We propose a learning-based image compression method
that achieves any arbitrary input bitrate via user-guided
bit allocation to preferred regions. We verify our hypoth-
esis of incorporating user guidance for bitrate control by
experimenting with alternatives that do not have any guid-
ance. We conduct extensive evaluation on CelebA-HQ and
CityScapes dataset using standard quantitative metrics and
human studies showing that our single model for multi-
ple bitrates achieves similar or better performance as com-
pared to previous learned image compression methods that
require re-training for each new bitrate.

1. Introduction
A desirable feature of any image compression algorithm is
the flexibility to achieve a bitrate specified by users as they
have strict storage budget requirements. Traditional codecs
like JPEG [29], JPEG2000 [25] or HEVC [24] partially al-
low users to control bitrate through quality factors. How-
ever, deep learning-based algorithms [2–5,17,18,22,26–28]
suffer from the drawback that the network is tightly cou-
pled to a single bitrate, as governed by the weight in rate-
distortion trade-off [7, 23] term used while training. Thus,
multiple networks have to be trained to achieve different
bitrates, which is both costly and time-intensive. A few at-
tempts [8, 10, 12, 28] have been made to address this draw-
back by training a single network for variable bitrates. None
of these approaches provide either theoretical or empirical
guarantees of achieving the desired (user-input) bitrate dur-
ing test time and generally, the output bitrate is controlled
by fine-tuning a few proxy parameters. Hence users are bur-
dened with the task of having to second-guess the values
that map to the exact bitrate that is desired and thus might
have to perform several forward passes through the network
till the desired rate is achieved.
We present a novel approach to user-guided image com-
pression that enables users to have direct control over bi-
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trate. The core idea of our method is to allow the user to
provide a relative importance map as input to the network,
which is of the same size as the input image wherein the
user specifies a certain importance value to every region in
the image. We hypothesize that this form of user guidance
enables optimal tracking of desired bitrate. Work by [15]
attempts object-adaptive image compression by learning an
importance map in an unsupervised manner. The learned
map is quantized and encoded in the form of bits, which en-
ables direct control of the final bitrate achieved. However,
since the importance map itself is a learned output of one
of the layers of the network as in [17], the user has no con-
trol of either the desired bitrate or which regions to allocate
more bits to.
The contributions of this paper are as follows:

• We propose a novel GAN-based and user-guided im-
age compression algorithm that allows users to in-
put desired bitrates. The generator is guided by a
user-provided relative importance map that is used to
achieve the desired bitrate.

• We propose a novel loss function, called the equiva-
lence distortion (ED) loss, that constrains the learned
importance map to be region-wise close to the input
importance map, thereby aiding to meet the bitrate
constraint.

• We show through quantitative experiments and hu-
man studies for CelebA-HQ and Cityscapes dataset
that a single model is able to achieve high quality
image reconstructions for a wide-range of input bi-
trates. Further, we show our method performs nearly
as well as traditional compression methods state-of-
the-art learned image compression methods for a broad
range of bitrates in terms of PSNR, MS-SSIM, FID and
KID metrics.

2. Learning One Model for Multiple Bitrates
Our problem statement is as follows: Given an input image
I , user-provided input bitrate t and relative importance val-
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Figure 1. End-to-end pipeline of our compression model with (C, n2) = (8, 16). ConvC is a convolution with C channels, ↑ 2, ↓ 2 indicate
strided up or down convolutions, BQ refers to Binary Quantizer. MG refers to Mask Generator. Method to obtain absolute importance
values is described in Section 5 of supplementary material. Discriminator is used only during training.

ues (pi)hi=1 for h different regions in image I , our goal is to
train a single model that (1) learns an importance map ml

that allocates bits to h regions in the order of their impor-
tance, and (2) maintains an output bitrate tout as close as
possible to the user-input bitrate t.
To achieve this, we introduce our lossy compression method
that is based on a GAN framework and follows an adversar-
ial training procedure. Figure 1 shows the architecture of
our compression method and an example of how importance
values get distributed within a region (details in Figure 3 of
supplementary). In the following sections, we describe our
architecture and the loss functions used to train our model.

2.1. Notations

We denote the user-input bitrate by t, user-input relative im-
portance map as mr, absolute importance map as ma and
the input image as I . The segmentation map for any region
i of the image I is denoted by si. The latent representation
generated by encoder is denoted by z and the binary code
by q. Importance Map Network gives a learned importance
map denoted by ml and the Mask Generator (MG) converts
ml into mq . Further, the compressed representation is de-
noted as cI and the reconstructed image is represented by
Ĩ . C, n respectively represent the number of channels in
the latent representation z and the down-sampling factor of
encoder. All the primed notations are the nearest-neighbour
down-sampled versions of their base notations.

2.2. Architecture

Encoder: generates a latent representation z of shape
(C,H/n,W/n) from the concatenation of absolute impor-
tance map ma and input image of shape (3 + 1, H,W ).
It comprises of a series of convolution layers and residual
blocks [26]. In our experiments, we set (C, n) = (8, 4).
Importance Map Network: takes an intermediate input
representation from the encoder and generates a single-
channel learned importance map ml that is close to the ab-
solute importance map ma. Each pixel of this learned map
contains values between 0 and 1, dictating the number of
latent representation channels to use for storing the infor-

mation of that pixel. Architecture is inspired from [15].
Mask Generator: takes the learned importance map ml

(1, H/4, W/4) and quantizes it into a mask mq (C, H/4,
W/4) that essentially dictates the number of channels to be
used to store information at each point in the encoded rep-
resentation. Adapted from [15], (mq)kij is given by 1 if
k < C ∗ml(i, j) and 0 otherwise.
Binary Quantizer: binarizes z by converting each value to
either -1 or 1, following the work of [27]. This quantized
output q is used to get cI by taking a Hadamard Product with
the quantized mask, mq generated from learned importance
map ml. Since there is a loss of information at this step, our
compression algorithm is lossy.
Decoder: mirrors the encoder with a series of deconvolu-
tion layers and residual blocks. It reconstructs the image, Ĩ
from the compressed latent representation cI of input image
I . In our experiments, all models use transposed convolu-
tion for up-sampling.
Discriminator: plays a key role in ensuring photo-realism
of reconstructed images as it attempts to distinguish be-
tween input (original) image I and reconstructed (fake) im-
age Ĩ . It takes in both the images concatenated with seg-
mentation maps si and learned importance map ml as its
input. We use a multi-scale version [20] consisting of four
discriminators, each operating at a different image scale and
having five convolution layers each.

2.3. Equivalence Distortion (ED) Loss Function

We introduce a novel loss function to ensure bits are allo-
cated optimally in the importance map while staying within
the limits of user-provided bit budget. It comprises of two
terms: Distortion Loss (LD) and Equivalence Loss (LE).
LD computes MSE Loss and MS-SSIM between the input
and reconstructed images and thus, affects the reconstruc-
tion ability of the model. LE affects the bitrate allocation of
the model and comprises of three terms: Lwhole that penal-
izes the model when the sum of values in learned map ex-
ceed the user input map, and two region-wise terms, L1

region

and L2
region that compare the maps region-wise and enforce

the model to adaptively distribute importance values within



a region in the learned map by giving higher weightage to
areas with high-texture or edges and lower weightage to flat
areas. The total loss, LED then becomes LED = LE+LD.
Additional losses are described in the supplementary.

3. Experiments and Results
3.1. Setup

Datasets: We use CelebAMask-HQ faces dataset [13, 14,
16] and CityScapes dataset [9] to train and evaluate our pro-
posed method. CelebAMask-HQ contains 30,000 high res-
olution (1024x1024) face images each having a 512x512
segmentation map with 19 classes. We club the classes
into 3 broad classes, i.e. Face, Hair, and Background. All
the images are resized to 256x256 dimensions. For the
CityScapes dataset, we club the object classes and consider
broadly 5 classes, viz. humans, vehicle, object, construc-
tion and others (details in supplementary). All the images
are resized to 512x1024 dimensions.
Baselines: We compare our proposed method with BPG
and High-Fidelity generative Compression (HiFiC) [18].
We consider HiFiC with GAN component as the closest
baseline to our work [1, 19]. Note that HiFiC has to be
trained three times on each dataset to obtain the -low, -med,
and -high variants of bitrates, unlike our method which has
to be trained only once. Additionally, there is no notion of
region-wise user input importance in the baselines, which is
a unique feature of our method.
Evaluation Metrics: We measure the quality of our com-
pression method using standard pixel-wise metrics like
PSNR and MS-SSIM, and perceptual metrics like FID [11]
and KID [6] scores. All metrics are computed on the entire
image except for region-wise PSNR scores that depend on
a particular region. We experimented with various values of
C and n that provide a maximum bitrate (C/n2) of 0.5 and
empirically found (C = 8, n2 = 16) to work the best, with
its corresponding results are discussed below.

3.2. Results

Gains from User Guidance We compare our method of
controlling output bitrate (tout) via user-guided relative im-
portance values with two alternatives that do not have any
user guidance/segmentation masks. The results and analy-
sis of the comparison is included in supplementary sec 8.2.
Varying Bitrates and Importance Values. In Figure 2,
we present the trends of perceptual metrics for our method
and baselines as we vary bitrates. Further, we present qual-
itative examples of reconstructed images and their learned
importance maps as we vary user-provided relative impor-
tance values. We increase the importance of one class (face
for CelebA, construction for CityScapes) and decrease the
importance of another by the same amount, keeping remain-
ing classes at same/equal importance. Figures 4 & 5 vali-

(a) CelebA (b) CityScapes

Figure 2. Comparison of our proposed method Our-D on (a)
CelebA; (b) CityScapes against baselines (BPG, HiFiC) as the bi-
trate is varied keeping the importances of all classes equal. We see
that Our-D is close to what is achieved by the baselines in most
metrics. This validates the efficacy of our approach of training a
single model for wide range of bitrates while performing on par
with baselines that are trained for a specific bitrate.

date the utility of our approach in incorporating region-wise
user preferences.
Human Evaluation. Since our method is a user-facing
technology, we conduct extensive human studies to gauge
the perceived visual quality of reconstructed images [21].
We use Amazon Mechanical Turk (AMT) for crowdsourc-
ing annotations through two surveys that compare images
generated by different baselines and our method. For qual-
ity control, we set the annotator prerequisites to ”MTurk
Masters” having an approval rate more than 95% in at least
past 30 annotations. We solicit five unique responses for
each datapoint. We conducted a pilot study and asked for
textual feedback from annotators to improve our questions.
From Figure 3, we observe that our model may not outper-
form baselines on quantitative metrics but it performs better
for all cases in human evaluation. While annotators prefer
HiFiC for CityScapes overall reconstruction, they prefer our
model when asked for region-wise (vechile) quality. When
asked to rate the overall quality, they might have not noticed
the finer details in diverse CityScapes images, thus prefer-
ring HiFiC which is trained for that particular bitrate and
dataset. However when asked to look carefully at the vehi-
cle region, our model fares better.

4. Limitations and Future Work
Our method requires semantic label maps to train, and we
experiment on domain-specific datasets like CelebA-HQ
and Cityscapes wherein the exhaustive set of object classes
is known to us. In future work, we intend to learn classes
and semantic maps within our method. We also intend to
reduce the gap between the input and output bitrates, and
ensure good performance at higher bitrates without satura-
tion, which can be potentially achieved with the addition of
an entropy coding scheme.



Figure 3. Results of Human Study across both datasets. From the first survey (left), we find that users find reconstructions from our
method to be closer to original image. From the second survey (right), we find that our method with high relative importance for specified
region is preferred by users as compared to HiFiC at same bitrate.

Original Image (a) (0.1, 0.33, 0.57) (b) (0.34, 0.33, 0.33) (c) (0.54, 0.33, 0.13)

For Target BPP : 0.15

PSNRF
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PSNRB
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0.1511 bpp
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Figure 4. Comparison of reconstructed images and learned importance maps from CelebA dataset with different user-provided importances.
The region-wise PSNR are also shown. The achieved bpp is nearly the same as the input target bpp even as we vary improtances. The
number of bits allocated to face in learned maps increase leading to improved reconstruction quality of face. Consequently, the degradation
in quality of background is evident.

Original Image (a) (0.1, 0.6, 0.1, 0.1, 0.1) (b) (0.1, 0.4, 0.1, 0.3, 0.1) (c) (0.1, 0.1, 0.1, 0.6, 0.1)
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Figure 5. We can see that the red car on the right side gets progressively smudgy, while the buildings and windows get sharper. We thus
validate our hypothesis on CityScapes dataset which is relatively more complex than the CelebA dataset both in terms of the variety in
objects and the number of different classes of objects.
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