
 

 

Abstract 

The compression technique is widely adopted for 

efficient data storage and transmission. Accurate image 

quality assessment (IQA) measures are urgently desired to 

evaluate the compression performance. To obtain a more 

robust evaluation, we propose a soft-ranked index fusion 

framework for the perceptual preference prediction task, 

with a combination of different quality measures. The 

derived soft-ranked indices are fully leveraged to provide 

the strong discriminability of ranking information. 

Furthermore, a saliency weighting approach is utilized to 

investigate the impact of visual attention on our 

framework. Experimental results indicate that our method 

achieves a promising prediction accuracy compared with 

the state-of-the-art quality measures. 

1. Introduction 

Image and video compression play the fundamental role 

due to the large volume of image and video data acquired, 

transmitted and stored. Central to the image and video 

compression is achieving a good trade-off between bit-rate 

and distortion. Considering that subjective quality 

assessment is strenuous and inconvenient, objective quality 

assessment is essential for practical use.   

The last decade has witnessed the boom in objective 

quality assessment based on the five principles: error 

visibility, structure similarity, information-theoretic, 

learning-based, and fusion-based methods. Error visibility 

reflects the pixel level error, e.g., mean squared error (MSE) 

and peak signal-to-noise ratio (PSNR). Structural 

similarity (SSIM) [1] and its variants (e.g., MS-SSIM [2] 

and FSIM [3]) consider image degradation as a perceived 

change in structural information. The prototypical 

information-theoretic method is VIF [4], which exploits 

natural scene statistics and the notion of image information 

extracted by the human visual system. More recently, 

learning-based measures (e.g., LPIPS [5] and DISTS [6]) 

utilize the convolutional neural network (CNN) to 

transform the reference and distorted images to a high-

dimensional representation and learn the quality from 

distortion-aware features. Video Multimethod Fusion 

Approach (VMAF) [7] is formulated by Netflix to estimate 

the quality by computing multiple QA measures and fusing 

them using the machine learning technique. 

There are many "in-capture" artifacts before 

compression, such as blur, noise, underexposure. These 

imperfect images are sub-sequentially compressed by 

different algorithms, further introducing distortions. To 

estimate the perceptual preference of compressed images, 

it is challenging to rely on a single quality measure. Since 

different quality measures have their own characteristics, 

the measurements may have excellent performance on 

specific distortion types but perform poorly on more 

complicated distortions. Inspired by previous work [7,8], 

we propose a soft-ranked index fusion framework for the 

perceptual preference prediction task, combining different 

quality measures. The intuition behind our proposed 

method is to leverage characteristics from different quality 

measures that could complement each other. 

Given the fusion strategy, we take advantage of the 

ranking information provided by multi-measurements to 

boost the estimation performance, which is substantial to 

perform preference prediction. In particular, the predicted 

scores are first converted to score differences according to 

the elaborately selected image pairs. Then, the score 

differences are adaptively rescaled according to the image 

contents and processed using the Bradley-Terry model [9] 

to generate soft rank indices, which could indicate the rank 

relationship of these image pairs. Besides, as analyzed in 

[10] that saliency information is beneficial for further 

improvement of IQA tasks, we further integrate saliency 

weighting into our framework to produce a robust 

prediction. 

In this paper, we take initial steps towards quality 

assessment for learned image compression based on fusion 

strategy. Our main contributions are three-fold as follows:  

1). A fusion-based quality assessment framework is 

proposed for the perceptual preference prediction task. 

Nine quality measures including an enhanced 

measurement are chosen for fusion. 

2). Preference ranking information and saliency 

information are further utilized to boost prediction 

accuracy.  

3). Our fusion-based framework outperforms other 

quality measures, and achieves a promising prediction 

accuracy. 
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2. Proposed Model 

As shown in Figure 1, our proposed fusion-based 

framework contains three parts: a soft-ranked index (SRI) 

mapping module, a saliency weighting module and a multi-

index fusion module. SRI mapping module maps predicted 

scores of different quality measures into soft-ranked 

indexes, indicating distorted image pairs’ preference 

ranking relationship. The saliency weighting module 

predicts a saliency mask, weights the input images, and 

feeds the weighted images into multiple quality measures. 

The index fusion module fuses a series of soft-ranked 

indices and predicts the probability of preferring image B. 

2.1. Enhanced DISTS 

DISTS [6] has built-in tolerances for texture resampling 

and texture similarity, providing good perceptual 

evaluation predictions. Due to its effectiveness, DISTS and 

variant measures were also studied in the CLIC2021 

competition [11].  

Original DISTS utilizes VGG [12] as its backbone 

model and concatenates the multi-stages’ output features 

for further evaluation. In this paper, we further exploit the 

influence of different backbone models. The evaluation is 

performed on the CLIC-V dataset which will be 

additionally introduced in Section 3.1, and the evaluation 

results are listed in Table I. As can be seen, DISTS with 

ResNet50 [13] as its backbone model can achieve higher 

Figure 2. Structure of DISTS_resnet. 
 

 
Figure 1. The framework of our proposed soft-ranked index fusion with saliency weighting. 

Table I. The accuracy of DISTS with different 

backbones on CLIC-V dataset. 

 

Backbone model Accuracy 

VGG16 [12] 0.749 

ResNet50 [13] 0.777 

ResNet101 [13] 0.775 

WideResNet [14] 0.774 

EfficientNet-b0 [15] 0.661 

EfficientNet-b7 [15] 0.736 

DenseNet [16] 0.748 

 



 

 

accuracy in our experiment. Therefore, we modify the 

original DISTS model to DISTS_resnet and subsequently 

integrate the enhanced DISTS_renset into our soft-ranked 

index fusion framework. 

2.2. SRI mapping 

In MMFN [8], adaptively rescaled scores from different 

quality measures are fused to produce a final score. Then a 

score2prob layer is integrated to learn the rank ability for 

the preference prediction task. However, the utilized 

score2prob layer can only learn the rank ability from two 

fused scores, while the ranking relationship predicted by 

multiple quality measures is neglected. In this paper, an 

SRI mapping module is proposed to fully exploit the rank 

information from numerous quality measures. As shown in 

the right-bottom of Fig. 1, we first calculate the score 

differences of image pairs from different quality measures. 

Then the score differences are adaptively rescaled 

according to the distorted-aware features from the VGG 

network. Finally, the rescaled score differences are mapped 

to soft-ranked indexes by the Bradley-Terry model and fed 

into the index fusion model to predict the quality. The 

mapping function can be formulated as follows: 
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where score_diff indicates the score differences of image 

pairs generated by different quality measures. ! and " are 

the weights and biases estimated from the distortion-aware 

features, which are extracted from the pre-trained VGG 

network. 

2.3. Saliency weighting 

Following [10], a saliency weighting module is utilized 

in our framework to boost prediction accuracy. We use a 

pre-trained salient object detection network TRACER [17] 

to predict a saliency mask. Then, the saliency mask is 

unified and followed by a morphological closing operation 

to capture more complete regions. Finally, the reference 

image and the distorted image pairs are weighted by the 

saliency mask and fed into multiple quality measures to 

produce a series of soft-ranked indexes with saliency 

information involved. 

2.4. Multi-index fusion  

To perform a more stable prediction, nine common 

quality measures with different characteristics have been 

chosen in our index fusion module, including PSNR, SSIM 

[1], MS-SSIM [2], GMSD [18], FSIM [3], VIF [4], VSI 

[19], LPIPS [5] and DISTS_resnet. It is worth mentioning 

that DISTS_resnet utilizes pretrained Resnet50 instead of 

VGG as the backbone.  

In addition to the nine soft-ranked indexes generated 

from these chosen quality measures, another corresponding 

nine soft-ranked indices generated with saliency weighting 

are also utilized for final fusion. The multi-index fusion 

module comprises four fully connected layers, and 

produces a probability of preferring image B.  

2.5. Loss function 

Two loss functions have been adopted since the 

enhanced DISTS_resnet and the soft-ranked index fusion 

framework are trained separately,  

In analogous to the loss function mentioned in [6], we 

adopt a mixed loss function to optimize the DISTS_resnet 

network: 
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where ,-(*,*) and D(*,*) represent prediction scores and 

ground-truth quality score respectively; ref  and A represent 

the reference image and distorted image, respectively; B1 

and B2 denote randomly cropped image patches from the 

same distorted image; N stands for the mini-batches, and λ 

governs the trade-off between the two terms, which is set 

as 1 in our experiment. 

To train the whole multi-index fusion framework, binary 

cross entropy loss is utilized to guide the optimization 

process: 
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where 9�  and 9;<  represent the ground-truth preference and 

predicted perceptual probability. 

3. Experiment 

3.1. Datasets 

In this paper, an enhanced DISTS_resnet and a soft-

ranked index fusion framework have been introduced, 

which are trained with different tasks. DISTS_resnet is 

trained to predict a perceptual score between the reference 

image and the distorted image. At the same time, the soft-

ranked index fusion framework aims at predicting the 

probability of preferring image B over image A. In our 

experiment, three datasets are involved while training our 

whole framework. 

PIPAL: PIPAL [20] dataset contains 200 reference, 40 

distortion types and 23,000 distorted images. In addition to 

classical noise types, PIPAL includes learning-based 

noises. The MOS value is provided for each distorted 

image. In addition to PIPAL, other two datasets have also 

been chosen to train DISTS_resnet for evaluation, and the 

experimental results are shown in Table II. As can be seen, 

DISTS_resnet trained on PIPAL performs the best. Since 

the MOS values in PIPAL dataset are derived from a 



 

 

ranking model, a hidden ranking relationship between 

these distorted images can be further exploited during 

training, which greatly benefits our task.  

CLIC_T: It is the training set provided by the CLIC2022 

competition [12]. There is a total of 122,107 records, 

including images pairs and preference labels. Since the 

records are not filtered, which contain many noise labels, 

the records with different labels or records that none of our 

selected nine indexes can predict correctly are removed. In 

total, 96036 pairs are chosen as our training set, and 24,009 

pairs are selected as our validation set. 

CLIC_V:  It is the validation set provided by the 

CLIC2022 competition [12]. There is a total of 5,220 

images pairs with preference labels in this database. We 

examine the final performance of our framework on this 

dataset. 

3.2. Implementation details 

Our framework is trained on the Pytorch framework 

with NVIDIA V100 GPUs. In the training process, we set 

the mini-batch size to 64, and choose the Adam optimizer 

with an initial learning rate of 0.0001 to optimize our 

model. Firstly, the enhanced DISTS_resnet is trained on 

the PIPAL dataset. The training procedure finishes when 

no more accuracy improvement is observed on our 

validation set. Secondly, the soft-ranked index fusion 

framework is trained on the CLIC-T dataset.  Finally, the 

performance of our framework is tested on the CLIC-V 

dataset.  

3.3. Results 

We compare the performance of our framework and 

other quality measures on the CLIC-V dataset in Table III. 

As can see in Table III, our framework outperforms other 

quality measures.  

3.4. Ablation study 

In this subsection, we conduct ablation experiments to 

verify the effectiveness of critical modules. “Ours without 

the SRI module” means that the rescaled predicted scores 

are directly fed into the fusion module without ranking 

information. “Ours without the saliency weighting 

module” means that only nine soft-ranked indices between 

original references and distorted images are provided in the 

fusion module, without utilizing saliency information. The 

experimental result is shown in Table IV. 

As shown in Table III, without ranking information 

being exploited, the fusion framework cannot precisely 

learn the rank relationship for the distorted image pairs, 

leading to a poor performance. Similarly, without the 

saliency weighting module, the framework loses the 

guidance of saliency prior knowledge and has a relatively 

lower performance than our final framework. 

4. Conclusion 

In this paper, we propose a soft-ranked index fusion 

framework with saliency weighting for the preference 

prediction task. Instead of directly fusing scores of multiple 

quality measures, score differences of image pairs are 

mapped into soft-ranked indexes in our designed SRI 

module to fully exploit the preference ranking information, 

which is more substantial for the perceptual preference 

prediction task. Besides, a saliency weighting module is 

utilized in our framework, which investigates the impact of 

visual attention into our method. The proposed framework 

investigates the perceptual information from both signal 

and feature domain, which improves the effectiveness and 

robustness of quality assessment. Experimental results on 

the CLIC-V dataset demonstrates the superiority of our 

method. We may continue the study on more effective 

quality measure fusion approaches and more elegant 

integration methods to introduce saliency information into 

IQA 

Table III. Accuracy of different quality measures on CLIC-V. 

Quality measure Accuracy 

PSNR 0.572 

SSIM 0.627 

MS-SSIM 0.612 

VIF 0.554 

FSIM 0.640 

GMSD 0.649 

VSI 0.635 

LPIPS 0.736 

DISTS 0.749 

DISTS_resnet 0.777 

ours 0.792 

 

Table IV. Performance of ablation studies, including our final 

framework, our method without SRI module, and our method 

without saliency weighting module. 

Model Accuracy 

ours w/o SRI module 0.776 

Ours w/o saliency weighting module 0.788 

ours 0.792 

 

Table II. Accuracy of DISTS_resnet trained on different 

dataset. 

dataset Accuracy on CLIC-V 

KADID [21] 0.767 

LICQA [22] 0.770 

PIPAL [20] 0.777 
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