ROI Image codec Optimized for Visual Quality

Abstract

With the development of compression technology, objec-
tive metrics (e.g. PSNR, MS_SSIM) cannot satisfy our need,
especially in extreme low bit-rate compression, thus more
attention is being paid on perceptual quality. People have
different standards for objective evaluation. For this reason,
we simplify the topic with the consideration that people will
strict more on interested region, so a ROI(region of interest)
based image compression model is proposed. For the ROI,
we expect its reconstructed part to be more accurate, while
the background, distortion is tolerable, and fake texture can
be generated. Firstly, a weighted mask from saliency map is
used. Secondly, to balance the difference of ROI and back-
ground area, different losses are applied separately. What'’s
more, GAN and LPIPS are utilized to generate more texture
in background. At last, variable rate method is adopted to
realize rate control, and it performs well with perceptual
metric. Experiment shows that our method can achieve bet-
ter performance both in visual and objective quality.

1. Method

Figure 1 provides a high-level overview of our proposed
method. In the following chapters, we will separately intro-
duce the network structure, ROI compression, variable-rate
implementation.

1.1. Network architecture

Our network is based on a main auto-encoder with hyper-
prior network. The main encoder architecture is shown in
Figure 2, which contains residual and attention mechanism.
In order to capture both channel-wise and spatial-wise re-
lationships, we utilize a channel-spatial attention block in
our main autoencoder, as shown in Figure 3. Different from
previous work [8, 9], we introduce residual blocks both in
trunk and attention branch to extract more powerful fea-
tures. Batch normalization layers are removed and ReLU
is used in residual blocks.

1.2. ROI Compression

In our model, to design corresponding optimization
methods for different image contents, the image is divided

into two types of regions. The first type of area includes hu-
man faces, text, etc. People require such textures to be accu-
rately reconstructed. For the second, more attention will be
paid on the perceptual quality even it deviates its original.
Thus, a ROI guided optimization method is introduce.

1.2.1 ROI Mask

When considering segmentation, instead of labeled seman-
tic segmentation, visual saliency detection can distinguish
the image into the focused area and background, which is
more suitable to our strategy. Different from [1], saliency
regions are generated offline through a saliency detection
network[2], which is fixed as a strong supervision while
training.

Maskaop = o(Detection(x)) (1)

where Detection denotes the saliency detection network
and o refers to sigmoid function.

For the saliency map, there are sharp boundaries between
different regions, so transition method should be used. Fig-
ure 5 shows that the decoder generates noise at such bound-
aries with gan loss. Therefore, we adapt a convolution layer
(the filter size is 51, and weights are all set to 1) to generate
a 2D ROI mask RMsp to smooth the saliency map.

RMsp = Smooth.on,(Masksap) 2)

1.2.2 Distortion Loss

Under the guidance of RMsp, we use differentiated loss
functions to optimize the ROI and the background area,
dROI and ng.

dror :RM2D®MSE($,,@> 3)

dggilfsSIM(:E,ﬂAZ)#*)\dep 4)

x and Z denote the input and reconstructed image. And
® refers to element-wise multiplication. dgor uses MSE as
a measurement, and it only takes effect in the ROI. We also
use L1 as droy. Although L1 makes the texture slightly
clearer than MSE, the RD performance is reduced, and sub-
jectively it may not be better than using L2. While, dpg
includes SSIM and a perceptual loss LPIPS as dp, which
proves to be closer to human visual evaluation standards.
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Figure 1. Overall architecture of the proposed image compression framework. The blue stacked layer represents the image compression
network, and the yellow stacked layer represents the hyperprior network. The ROI Network is not trainable. VGain and Inverse VGain is
used to implement variable rate. AE/AD are short for arithmetical encoder/decoder. MASK processing will be described in Section 1.2.3.
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Figure 2. Network architecture of our main encoder.
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Figure 3. The structure of our channel-spatial attention mod-
ule.”RB” means residual block.

We observed that using MSSSIM alone sometimes resulted
in a color temperature shift in the reconstructed map. The
default A, is 0.5.

1.2.3 ROI Latents

From the perspective of visual quality optimization, more
bits are allocated to the ROI to enhance the accuracy of the
reconstructed features. When the image is mapped into la-
tent representations by the encoder, the spatial characteris-
tics are still preserved even down-scaled by 16x. So for the
latents, we can generate ROI mask RMy 4iene applied on it
by averaging pooling (stride is set as 16):

RMatent = AvgPool(RMap) 5)

With the weighted RM [ qtent, latents in ROI are mag-
nified, thus the area of ROI will occupy more bits in the
generated code stream. In addition, we use « to control the
weight of the ROI in terms of rate allocation.

RMLatent +
«

Latentror = ® Latent (6)

Here, a smaller & means more bits are allocated to the
ROI area in latents. What’s more, we protect a certain num-
ber of channels to retain appropriate information for the
background to avoid the fading of its reconstructed texture.

Latentror = Latentcno—chaz||Latent rorchas—chion
@)
Assuming there are 192 channels in latents, the first 48
feature maps are protected, and the following channels are
weighted with [6] for corresponding channels.

1.3. Variable Rate

To realize rate control, we adopt a variable-rate strategy
as in [4]. In the encoder, a scaled matrix M € R%"™ is
introduced to scale the encoded latent representation y €
R*h*w channel by channel, where c, h, w, n represent the
number of the channels, the height, width of latents, and the
number of scaled vectors respectively. The scaled vector
can be denoted as v = {vs(0), Qs(1)s s AUs(e—1) }» Us(i) €
R, where s represents the index of the scaled vectors in the
scaled matrix. The scaled matrix is trained to obtain differ-
ent bit rates by scaling the channels of the latent represen-
tation as Eq.8. Here y represents Latentro;.

Ys = G(yas) =Y O us, (®)

where G(-) represents the scale process, © represents
channel-wise multiplication, ¥ is the scaled latent repre-
sentation.

In the decoder side, another scaled matrix M’ € R
is applied to rescale the quantized scaled latent represen-
tation §s. The inverse-scale vector is denoted as v, =
{Bs(0), Bs(1ys s Bs(e—1) }» Bs(iy € R. The inverse-scale
process works as Eq.9.

yé:IG(ng):gs@U;v )

Each pair of the scaled vector v, v/, are corresponding to
a specific Lagrange multiplier which are included in the loss
function for training to acquire models with variable rate.
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Figure 4. Visual quality comparison of reconstructed images.
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Figure 5. Comparisons with different masks.

For purpose of accurate rate control, a continuous vari-
able rate model is need in inference.

vs - vl = C, (10)

where vg, v}, (s € [0, 1, ...,n — 1]) represent existing scaled
vector pairs, and C' € R€ is a constant vector. More vec-
tors can be interpolated linearly through these scaled vector
pairs as [4].

1.4. Quantization and Entropy Model

In our model, an additive i.i.d uniform noise is used to
approximate quantization on latent representations to make
the framework end-to-end trainable.

Following the work of Cheng er al. [3], we intro-
duce Gaussian mixture model to parameterize flexible con-
ditional distributions of Latentror representations com-
bine with an auto-regressive context prior and hyperprior.
For the latents of hyperprior Z, it’s modeled by a non-
parametric, fully factorized density model. Finally, the total
bit rate cost r is defined as Eq.11.

r:rLate’r;/tRo[ +7‘2 (11)
1.5. Adversarial Training

With a ROI loss that protects key information of con-
tents and reduce substantial redundancy in backgrounds, we

further introduce a conditional GAN in the rate-distortion
trade-off to maintain high perceptual fidelity of recon-
structed images at low bit-rate, as that in [7], where the
information used in conditional GAN is ROI latents, as is
defined in Eq.[3,4]. In addition to the conditional GAN, we
also tried to use LSGAN [6], which did not bring subjective
performance gains.

2. Experiments
2.1. Training

Models are trained in two stages. Firstly, it’s trained
without GAN to initialize parameters stably, then the model
with GAN are trained to improve subjective quality. The
size of the images is cropped to 256 x 256, and we use Adam
optimization with the initial learning rate of 1e~%. Mean-
while, batch size is set to 8, and it takes 1e® iterations for
the model without GAN and with GAN respectively.

While training for variable rate, three models of
0.075bpp, 0.15bpp and 0.3bpp are optimized. For each
variable-rate model, we set six sets of scaled vectors and
Lagrange multipliers [vs, v/, A;] in training. For 0.075bpp,
A is selected from [120, 220, 320, 420, 520, 720], and [30,
90, 140, 190, 240, 290] and [10, 20, 30, 50, 70, 90] for
0.15bpp and 0.3bpp separately.

2.2. Objective Quality Evaluation

Figure 6 demonstrates that the rate-distortion curve of
our model and other advanced compression models in
CLIC2022 validation set. It can be seen that, compared with
ICLR2019 [5] and BPG, our ROI compression model has a
great advantage in perceptual metrics (LPIPS, FID), while
its performance on MS_SSIM is mediocre. In the curve of
MS_SSIM, ROI 1.5 and w/o GAN perform better than the
BASE, which indicates that the objective quality did not
decrease with the deployment of the ROI. We assume such



FID 4

MS-SSIM t

220 —&— ROIL.5 0.25
w/o G

200 1CLR2019
BPG

1807 BASE

1004 0.1+
804

0.05
604

0.914 =@ ROI1.5
~@— w/o GAN
ICLR2019
0.934 BPG

[~@— ROI1.5

~@— w/0 GAN
ICLR2019
BPG 0.974
BASE

BASE

T T T T T T T
0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15
Bit-rate (bpp)

T T T T T T T T
0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3
Bit-rate (bpp)

Bit-rate (bpp)

Figure 6. Comparison of rate-distortion performance of Our model with BPG and ICLR2019 [5]. 1 and | respectively represent larger and

smaller values are better.
Table 1. Quantitative results on different target bpp of CLIC2022
validation image.

Bpp PSNRT MS-SSIM{ LPIPS| ROI-PSNRt
0.106 30.06 0952  0.055 29.29

0.195 31.76 0.971 0.032 31.19
0.293 32.89 0.979 0.021 33.16

result to the protection of channel as explained in 7. Table
1 shows our evaluation on the validation set.

3. Conclusion

In this paper, ROI based image compression method is
proposed to improve visual quality. To fully extract the in-
formation of ROI, we utilize it not only in loss but also la-
tents, and method to obtain ROI based latents is proposed.
A better balance of rate and distortion between ROI and
background are discovered. At last, we also verify the ef-
fectiveness of variable rate method, that is one model can
get different rates with different subjective quality in one
model. Experiments results prove that our method can sur-
pass the state-of-the-art method both in subjective and some
high-level objective metrics, such as LPIPS, FID.
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