CVPR 2020 Workshop and Challenge on Learned Image Compression

Learning-Based Image/Video Coding

Lu Yu Zhejiang University

Outlines

- System architecture of learning based image/video coding
 - Learning based modules embedded into traditional hybrid coding frameworks
 - In-loop filter, Intra prediction, Inter prediction, Entropy coding, etc.
 - Transform, quantization
 - Encoder optimization
 - End-to-end image and video coding
- Coding for human vision vs. coding for machine intelligence

Theory of Source Coding and Hybrid Coding Framework

Two threads of image/video coding Input video Spatial redundancy Perceptual redundancy **Characteristics of source signal** ٠ **Transform** Quantization **Spatial-temporal correlation** Ο Intra and inter prediction 0 Dequantization transform 0 Inv. Transform **Statistical correlation** Bitstream Ο **Entropy coding** Symbols: stationary random process Ο Spatial redundancy Statistical redundancy Entropy coding 0 Intra prediction 0 **Characteristics of human vision In-loop filter** ٠ Limited sensitivity Ο Inter prediction 04 Quantization \bigcirc **Balance between cost and performance** Temporal redundancy **Rate-distortion theory** ٠

Filtering

- Network input
 - Current compressed frame
- Network output
 - Filtered frame
- Network structure
 - 22-layer CNN with inception structure

TABLE I Configuration of VR Block

Layer	Lay	er 1	Layer 2		
Conv. module	conv1_1	conv1_2	conv2_1	conv2_2	
Filter size	3×3	1×1	3×3	1×1	
# filters	32	32	32	32	

Integration into coding system

- Same model for Luma and chroma component
- Different model for different QP
- For I-frame: replace Deblocking filter (DB) and Sample Adaptive Offset (SAO)
- For B/P-frame: added between DB and SAO, switchable at CTU-level

Performance (anchor: HM16.0)

	All-Intra			L	ow-Delay	В	Ra	ndom-Acc	ess	
	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)	
Class A	-5.4	-6.2	-5.5	_	_	_	-5.3	-11.2	-9.6	
Class B	-7.3	-7.5	-9.0	-7.3	-11.4	-12.1	-8.0	-11.1	-11.1	
Class C	-9.9	-10.4	-13.4	-8.8	-11.2	-13.5	-8.7	-11.9	-14.9	
Class D	-10.0	-10.4	-13.4	-8.1	-9.0	-12.0	-7.8	-9.0	-12.4	
Class E	-13.4	-10.0	-9.5	-14.2	-14.9	-13.2	_	_	-	
Overall	-9.2	-8.9	-10.2	-9.6	-11.6	-12.7	-7.4	-10.8	-12.0	
Enc. Time	4710%			1818%			1835%			
Dec. Time		267686%			756074%			727860%		

[1] Dai Y, Liu D, Zha Z J, et al. A CNN-Based In-Loop Filter with CU Classification for HEVC[C]//2018 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2018: 1-4.

Filtering with spatial and temporal information

> Network input

- Current compressed frame
- Previous reconstructed frame

Network output

• Filtered frame

Network structure

• 4-layer CNN

	Layer1		Layer2	Layer3	Layer4
	conv1	conv2	conv3	conv4	conv5
Filter Size	5×5	3×3	3×3	3×3	1×1
Feature Map Number	32	32	16	8	1
Param Number	800	288	9216	1152	8
Total Param Number			11464		

Integration into coding system

- Same model for Luma and chroma component
- Different model for different QP
- Used in I/P/B frames
- After DB and SAO
- Switchable at CTU-level

Performance (anchor: RA, HM16.15)

ç	Sequences	Random Access
	sequences	Y
	Kimono	-0.7%
	ParkScene	-0.8%
Class B	Cactus	-0.3%
	BasketballDrive	-1.0%
	BQTerrace	-0.1%
	BasketballDrill	-1.0%
Class C	BQMall	-1.1%
Class C	PartyScene	-1.2%
	RaceHorsesC	-1.5%
	BasketballPass	-2.0%
Class D	BQSquare	-1.8%
	BlowingBubbles	-2.1%
	RaceHorses	-2.2%
	FourPeople	-5.1%
Class E	Johnny	-0.8%
	KristenAndSara	-1.5%
	Overall	-1.3%

[2] Jia C, Wang S, Zhang X, et al. Spatial-temporal residue network based in-loop filter for video coding[C]//2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2017: 1-4.

Filtering with quantization information

Network input

- Current compressed frame
- Normalized QP map

Network output

• Filtered frame

Network structure

• 8-layer CNN

$(K_L=64)$

Integration into coding system

- Same model for Luma and chroma component
- Same model for all QPs
- Replace bi-lateral filter, DB and SAO, and before ALF
- Only used on I frames
- No RDO

Network compression

- Pruning:
 - ✓ Operate during training
 - Filters pruned based on absolute value of the scale parameter in its corresponding BN layer
 - Loss function: additional regularizers for efficient compression
- Low rank approximation:
 - ✓ Operate after pruning
- Dynamic fixed point adoption

Performance (anchor: RA, JEM7.0)

Table	Table 6. Test results of AI configuration with ALF on					LF on	Table 7.	Test resul	ts of RA c	onfiguratio	n with A	LF on	
				CPU	+GPU	C	PU					C	PU
	Y	U	V	EncT	DecT	EncT	DecT		Y	U	V	EncT	DecT
ClassA1	-2.26%	-6.21%	-5.05%	93%	157%	109%	15360%	ClassA1	-0.39%	-1.96%	-1.93%	99%	275%
ClassA2	-3.58%	-6.33%	-7.02%	92%	158%	112%	16312%	ClassA2	-1.76%	-3.70%	-4.29%	99%	303%
ClassB	-3.08%	-5.06%	-6.27%	94%	148%	108%	15360%	ClassB	-1.46%	-4 65%	-4.14%	00%	330%
ClassC	-3.88%	-6.98%	-9.11%	94%	158%	103%	11139%	ClassD	-1.40%	-4.05 %	-4.1470	1110	33770
ClassD	-4.13%	-5.63%	-8.20%	94%	214%	102%	7256%	ClassC	-1.28%	-4.40%	-4.75%	99%	289%
ClassE	-4.93%	-7.41%	-6.88%	94%	169%	111%	15441%	ClassD	-1.22%	-3.28%	-4.20%	99%	219%
Overall	-3.57%	-6.17%	-7.06%	93%	157%	109%	12887%	Overall	-1.23%	-3.65%	-3.88%	99%	284%

[3] Song X, Yao J, Zhou L, et al. A practical convolutional neural network as loop filter for intra frame[C]//2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018: 1133-1137.

Filtering with high-frequency information

Network input

- Current compressed frame
- Reconstructed residual values

Network output

• Filtered frame

Network structure

• 4-layer CNN

Layer		Lay	/erl		Lay	/er2	Lay	/er3	Layer4
Conv.module	conv11	conv12	conv13	conv14	conv21	conv22	conv31	conv32	conv4
Filter size	3x3	5x5	3x3	5x5	3x3	3x3	lxl	3x3	3x3
Filter number	32	16	32	16	16	32	32	16	1
Parameters	320	416	320	416	13,840	13,856	1,568	6,928	433
Total parameters					38,097				

Integration into coding system

- Same model for Luma and chroma component
- Different model for different QP
- Replace DB and SAO
- Only used on I frames
- No RDO

Performance (anchor: HM16.15)

TABLE III AI CONFIGURATION, BD-RATE RESULTS OF CNNF-R AND VRCNN COMPARED WITH HM16.15

Class	Securence	BD-	rate(VRC	NN)	BD	-rate(CNN	F-R)
Class	Sequence	Y	U	v	Y	U	V
	Traffic	-4.7%	-2.9%	-3.4%	-5.6%	-3.7%	-4.1%
	PeopleOnStreet	-4.6%	-5.0%	-4.5%	-5.6%	-5.6%	-5.1%
ClassA	Nebuta	-0.3%	-3.9%	-3.0%	-0.9%	-5.3%	-4.0%
	SteamLocomotive	-0.8%	D-rate(VRCNN) BD-rate(CN) U V Y 2.9% 3.4% -5.6% .3.7% -5.0% -4.5% -5.6% .5.6% -3.9% -3.0% -0.9% -5.3% -0.7% -0.5% -2.0% -2.1% -2.1% -1.8% -3.5% -2.8% -3.4% -2.6% -4.7% -3.7% -3.0% -5.1% -4.7% -3.7% -3.0% -5.1% -4.7% -3.7% -3.0% -5.1% -4.7% -3.7% -3.0% -5.1% -4.7% -4.1% -4.5% -4.8% -6.4% -5.7% -4.1% -3.9% -5.2% 5.0% -3.4% -3.3% -3.5% -3.1% -6.6% -6.1% -5.3% -5.1% -2.6% -4.0% -3.5% -3.1% -5.8% -8.1% -4.4% -6.5% -5.1% -5.6% -6.6% -5.5% <	-2.1%	-1.8%		
	Kimono	-2.5%	-2.1%	-1.8%	-3.5%	-2.8%	-2.3%
	ParkScene	-3.6%	-3.4%	-2.6%	-4.7%	-3.7%	-2.9%
ClassB	Cactus	-3.1%	-3.0%	-5.1%	-4.7%	-4.1%	-6.4%
	BasketballDrive	-1.1%	-2.2%	-4.0%	-3.6%	-3.9%	-6.1%
	BQTerrace	-0.7%	-2.9%	-1.8%	-2.5%	-4.4%	-2.7%
	BasketballDrill	-5.3%	-4.5%	-4.8%	-6.4%	-5.7%	-6.7%
ClasseC	BQMall	-4.1%	-4.1%	-3.9%	-5.2%	-5.0%	-4.9%
Classe	PartyScene	-2.7%	-3.4%	-3.3%	-3.5%	-4.0%	-3.9%
	RaceHorses	-3.7%	-5.8%	-8.1%	-4.4%	-6.5%	-9.0%
	BasketballPass	-3.8%	-4.1%	-7.1%	-5.3%	-5.1%	-8.6%
Class	BQSquare	-2.5%	-2.6%	-4.0%	-3.5%	-3.1%	-5.1%
Classic	BlowingBubbles	-3.4%	-6.0%	-6.0%	-4.2%	-6.7%	-6.6%
	RaceHorses	-6.0%	-7.7%	-9.3%	-6.6%	-8.7%	-10.4%
	FourPeople	-5.8%	-4.4%	-4.5%	-6.8%	-5.5%	-5.4%
ClassE	Johnny	-4.4%	-5.1%	-5.6%	-5.6%	-6.6%	-6.7%
	KristenAndSara	-5.5%	-5.4%	-5.7%	-6.4%	-6.7%	-6.7%
	Class A	-2.6%	-3.1%	-2.9%	-3.5%	-4.2%	-3.8%
Summary	Class B	-2.2%	-2.7%	-3.1%	-3.8%	-3.8%	-4.1%
Summary	Class C	-3.9%	-4.4%	-5.0%	-4.9%	-5.3%	-6.1%
	Class D	-3.9%	-5.1%	-6.6%	-4.9%	-5.9%	-7.7%
	Class E	-5.2%	-5.0%	-5.3%	-6.2%	-6.2%	-6.3%
	Average	-3.6%	-4.2%	-4.9%	-4.8%	-5.2%	-5.9%
						-	-

TABLE IV RA CONFIGURATION, BD-RATE RESULTS OF CNNF-R AND VRCNN COMPARED WITH HM16.15

Class	BD-	rate(VRC	NN)	BD-rate(CNNF-R)			
Cidaa	Y	U	v	Y	U	V	
ClassA	-1.4%	-0.9%	-0.6%	-1.7%	-2.3%	-1.9%	
ClassB	-1.9%	-0.1%	0.5%	-2.5%	-1.1%	-0.4%	
ClassC	-0.5%	-0.7%	-0.8%	-1.0%	-1.5%	-1.6%	
ClassD	-0.5%	0.0%	-0.8%	-1.0%	-0.8%	-1.5%	
ClassE	-4.5%	-4.0%	-4.0%	-5.4%	-5.7%	-5.2%	
Average	-1.7%	-1.0%	-1.0%	-2.3%	-2.0%	-1.9%	

TABLE V AI CONFIGURATION, COMPUTATION COMPLEXITY OF CNNF-R AND VRCNN COMPARED WITH HM16.15 ON CPUS

Chara	VRCNN vs	s. HM16.15	CNNF-R v	CNNF-R vs. HM16.15		
Class	EncT/times	DecT/times	EncT/times	DecT/times		
ClassA	44	3680	13	1082		
ClassB	45	3990	13	1137		
ClassC	35	2768	10	802		
ClassD	37	2094	П	588		
ClassE	48	3313	12	935		
Average	42	3169	12	909		

[4] Li D, Yu L. An In-Loop Filter Based on Low-Complexity CNN using Residuals in Intra Video Coding[C]//2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019: 1-5.

Filtering with block partition information

Network input

- Current compressed frame
- Block partition information: CU size

(c) Boundary-based

mask

Original frame with (b) Local Mean-based ition information mask

Network output

- Filtered frame
- Network structure

Integration into coding system

- Different model for different video content in an Exhaustive search way
- Different model for different QP
- Used on I/P/B frames
- After DB and SAO
- CTU-level switchable

Performance (anchor: HM16.0)

Figure 14. Comparison of different methods on computational time per CTU in decoder side versus BD-rate saving over HEVC baseline.

(1) VRCNN (S) [18] which is a baseline CNN-based compressed-video post-processing method; (2) QECNN-P [20] which is a compressed-video post-processing method for P frames in HEVC; (3) DRN [21], which is another state-of-the-art compressed-video post-processing method. (4) VR-CNN+MM+AF (S^{*}), which integrates our partition-aware-based approach into the existing baseline VRCNN method; (5) DRN+MM+AF, which integrates our partition-aware-based approach into the existing DRN method; (6) Our 2-in+MM+AF (D^{*}), which is the full version of our partition-aware-based approach with local mean-based mask and add-based fusion; (7) Our ASN@4D^{*}, which is the adaptive-switching scheme with the deep CNN model. From the table,

Content adaptive filtering

- Filtering for reconstructed pixels
 - Inserted into diff. position of in-loop filtering chain: deblocking \rightarrow SAO \rightarrow ALF
 - Replace some filters in the chain
- Information utilized
 - Reconstructed pixels in current frame
 - Temporal neighboring pixels
 - QP map, blocksize, prediction residuals, ...
- o Network
 - From 4-layer to deep

Prediction block refinement using CNN

- Network input
 - 8x8 PU and its three nearest 8x8 reconstruction blocks
- Network output
 - Refined PU
- > Network Structure: composed of 10 weight layers
 - Conv+ ReLU: for the first layer, 64 filters of size 3×3×c
 - Conv + BN + ReLU: for layers 2 ~ 9, 64 filters of size 3×3×64
 - Conv: for the last layer, c filters of size 3x3x64
 - *c: c represents the number of image channels

Integration into coding system

- Replace all existing intra modes
- Fixed block size

Performance (anchor: AI, HM14.0)

Table 1 BD-rate saving for The Proposed Scheme with Ranges of Sequences

Sequences	BD-rate	Sequences	BD-rate
Traffic	-0.9%	PartyScene	-0.5%
PeopleOnStreet	-1.2%	RaceHorses	-0.7%
Kimono	-0.2%	BasketballPass	-0.4%
ParkScene	-0.8%	BQSquare	-0.1%
Cactus	-0.8%	BlowingBubbles	-0.7%
BasketballDrive	-0.6%	RaceHorses	-0.7%
BQTerrace	-0.8%	FourPeople	-0.3%
BasketballDrill	-0.5%	Johnny	-1.0%
BQMall	-0.6%	KristenAndSara	-0.8%
All average		-0.70%	

Prediction Block Generation Using CNN

- Network input
 - 8 rows and 8 columns reference pixels
- Network output
 - prediction block
- > Network Structure:
 - 4 fully connected networks with PReLU

Fully Connected Layer 🗍 Non-Linear Activation Layer

Integration into coding system

- As an additional intra mode
- CU-level selective
- Different models for all TU size in HEVC : 4x4,8x8,16x16,32x32

Performance (anchor: Al, HM16.9)

Saguança		IPFCN-D		IPFCN-S			
Sequence	Small QPs	Normal QPs	Large QPs	Small QPs	Normal QPs	Large QPs	
Class A (4K)	-2.2%	-4.5%	-5.0%	-1.8%	-3.8%	-4.5%	
Class B (1080P)	-1.9%	-3.1%	-3.9%	-1.5%	-2.7%	-3.0%	
Class C (WVGA)	-1.1%	-2.1%	-3.3%	-0.9%	-1.8%	-2.6%	
Class D (WQVGA)	-0.9%	-1.8%	-3.0%	-0.8%	-1.5%	-2.9%	
Class E (720P)	-2.3%	-4.5%	-4.2%	-1.8%	-4.2%	-3.8%	
Average of All Classes	-1.8%	-3.4%	-4.0%	-1.4%	-2.9%	-3.5%	

*Small QPs: {11, 16, 21, 26}, Normal QPs: {22, 27, 32, 37}, Large QPs: {33, 38, 43, 48}.

IPFCN-D: different model for angular intra modes and nonangular intra modes, respectively IPFCN-S: same model for angular intra modes and nonangular intra modes

[2] Li J, Li B, Xu J, et al. Fully connected network-based intra prediction for image coding[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3236-3247.

Prediction Block Generation Using RNN

Network input

neighboring reconstructed pixels and current PU

Fig. 4. Different availability of reference samples in a coding unit. Blocks with two different colors are processed using two different models.

- Network output
 - prediction block
- Training strategy:
 - Loss Function : MSE/SATD

Network Structure:

- Overall structure: CNN + RNN
 - using CNN to extract local features of the input context block and transform the image to feature space.
 - using PS-RNN units to generate the prediction of the feature vectors.

Fig. 2. Structure of a PS-RNN unit. It splits a stack of feature maps into vertical and horizontal planes. Each plane represents a feature map of a vertical line or a horizontal line in the original grey-scale image. After the progressive prediction, these planes are concatenated to reconstruct the feature maps. A convolutional layer is used to fuse the predictions from the vertical and horizontal feature maps.

[3] Hu Y, Yang W, Li M, et al. Progressive spatial recurrent neural network for intra prediction[J]. IEEE Transactions on Multimedia, 2019, 21(12): 3024-3037.

Prediction block generation using RNN

Performance (anchor: Al, HM16.15)

 TABLE I

 QUANTITATIVE ANALYSIS OF SELECTED METHODS. THE RESULTS ARE SHOWN IN BD-RATE USING HEVC (HM 16.15) AS THE ANCHOR. PU SIZE

 IS SET TO 8 \times 8 in Both the Proposed Model and the Anchor

C 1	9		DO DADA ACCO	DC CUTD	LING
Class	Sequence	PS-RNN-SATD	PS-RNN-MSE	FC-SAID	L1 [16]
Class A	Traffic PeopleOnStreet Nebuta(10bit) SteamLocomotive(10bit)	-3.8% -3.8% -1.9% -3.2%	-2.3% -2.2% -1.9 % -2.8%	-3.1% -3.1% -1.9% - 3.2%	-1.0% -1.3% -1.6% -1.7%
	Class A Average	-3.2%	-2.3%	FC-SATD -3.1% -3.1% -3.1% -3.2% -2.8% -6.4% -2.9% -2.2% -3.7% -1.6% -3.4% -1.9% -1.4% -1.1% -2.3% -1.7% -1.4% -0.8% -1.7% -1.4% -1.7% -2.2% -1.5% -4.7% -4.1% -4.0% -4.3% -2.7%	-1.4%
Class B	Kimono ParkScene Cactus BasketballDrive BQTerrace	-6.6% -3.4% -3.3% -7.8% -2.6%	-3.6% -1.9% -1.8% -3.2% -1.8%	-6.4% -2.9% -2.2% -3.7% -1.6%	-3.2% -1.1% -0.9% -0.9% -0.5%
	Class B Average	-4.7%	-2.5%	-3.4%	-1.3%
Class C	BasketballDrill BQMall PartyScene RaceHorses	-2.9% -2.9% -2.3% -2.8%	-1.5% -1.9% -1.8% -2.1%	-1.9% -1.4% -1.1% -2.3%	-0.3% -0.3% -0.4% -0.8%
	Class C Average	-2.7%	-1.8%	FC-SATD -3.1% -3.1% -3.2% -2.8% -6.4% -2.9% -2.2% -3.7% -1.6% -3.4% -1.9% -1.4% -0.8% -1.1% -2.3% -1.7% -1.4% -0.8% -1.7% -2.2% -1.5% -4.7% -4.1% -4.0% -4.3% -2.7%	-0.5%
Class D	BasketballPass BQSquare BlowingBubbles RaceHorses	-2.5% -1.8% -2.3% -2.6%	-1.7% -1.2% -1.6% -2.5%	-1.4% -0.8% -1.7% -2.2%	-0.4% -0.2% -0.6% -0.6%
	Class D Average	-2.3%	-1.8%	-1.5%	-0.5%
Class E	Johnney FourPeople KristenAndSara Class E Average	-6.8% -5.6% -6.6% -6.3%	-3.8% -2.8% -2.9% -3.2%	-4.7% -4.1% -4.0% -4.3%	-1.0% -0.8% -0.8% -0.9%
	Average	-3.8%	-2.3%	-2.7%	-0.9%

Prediction Block Generation Using Single Layer Network

Network input

- R rows and R columns reference pixels
 - ✓ Height/width of current block smaller than 32: R = 2
 - ✓ Otherwise: R =1
- Mode:
 - ✓ Height/width of current block smaller than 32: 35 modes
 - ✓ Otherwise: 11 modes

Network output

• prediction block

Figure 1. Prediction of MxN intra block from reconstructed samples using a neural network.

Network Structure:

- 2-layer neural network during training
 - ✓ Layer1: feature extraction, same for all modes
 - ✓ Layer2: prediction, different for different modes

$$f(\mathbf{x})_{i} = \max(-1, \mathbf{x}_{i}), \quad \begin{array}{l} R: \text{ reference samples} \\ \{A_{i,k}, b_{i}\} = \text{ network parameters} \\ \mathbf{t}_{1} = f(\mathbf{A}_{1}\mathbf{r} + \mathbf{b}_{1}) \\ \mathbf{p}_{k}(\mathbf{r}) = \mathbf{A}_{2,k}\mathbf{t}_{1} + \mathbf{b}_{2,k}. \end{array}$$

$$i = \text{ network layer index}, k = \text{ mode} \\ index \\ P_{k}(r) = \text{ output prediction results} \end{array}$$

• Network Simplification:

- Pruning: compare the predictor network and the zero predictor in terms of loss function in frequency domain. If loss decrease is smaller than threshold, use zero predictor instead.
- Affine linear predictors: removing the activation function, using a single matrix multiplication and bias instead.

[4] Helle P, Pfaff J, Schäfer M, et al. Intra picture prediction for video coding with neural networks[C]//2019 Data Compression Conference (DCC). IEEE, 2019: 448-457.

Prediction Block Generation Using Single Layer Network

Signaling mode index

- Use a two-layer network to predict the conditional probability of each mode
- The outputs from step#1 are sorted to obtain an MPM-list and an index is signaled in the same way as a conventional intra prediction mode index.

Figure 2. Prediction of mode probabilities from reconstructed samples using a neural network.

Integration into coding system

- Network generated prediction as an additional intra mode
- RDO to choose intra mode

Performance (anchor: AI, VTM1.0)

Secuence class	Socialonco nomo]	BD-Rate	e
Sequence class	Sequence name	Y'	Cb	Cr
	Tango2	-5.20	-4.31	-3.42
A1	FoodMarket4	-5.67	-2.90	-3.06
	Campfire	-1.44	-0.88	-1.29
	CatRobot1	-3.66	-2.69	-1.96
A2	DaylightRoad2	-4.01	-1.60	-2.47
	ParkRunning3	-1.93	-1.81	-2.24
	MarketPlace	-3.11	-1.33	-0.48
	RitualDance	-5.49	-2.89	-2.68
В	Cactus	-3.88	-2.17	-1.99
	BasketballDrive	-2.92	-1.95	-2.00
	BQTerrace	-2.60	-0.60	0.10
	RaceHorses	-2.78	-1.63	-1.88
С	BQMall	-4.40	-2.47	-2.29
U U	PartyScene	-2.89	-1.56	-1.62
	BasketballDrill	-2.51	-2.32	-2.61
	RaceHorses	-3.74	-2.43	-2.00
D	BQSquare	-2.84	-0.79	-1.05
D	BlowingBubbles	-2.71	-1.63	-2.00
	BasketballPass	-3.43	-2.22	-2.52
	FourPeople	-6.23	-2.93	-3.44
E	Johnny	-5.80	-2.80	-2.85
	KristenAndSara	-6.12	-3.23	-3.88
ave	rage	-3.79	-2.14	-2.17

Prediction for block of pixel values

- Refinement of traditional prediction: content adaptive filtering
- Prediction by extrapolation
 - Prediction domain: spatial domain, frequency domain
 - Supplement or replace to traditional modes
 - Network architecture: CNN, RNN, FCN and their combinations
 - Reference pixels: one or multiple raw(s)/column(s)
 - Loss function: Energy of residuals in spatial domain (MSE), Hardmad transform domain (SATD), DCT domain
- Prediction of intra mode
 - Probability estimation for all modes: Most Probability Modes list

Subpixel Interpolation

- > Network input
 - Integer-pixel frame
- Network output
 - Half-pixel Interpolated frame
- Network Structure:
 - SRCNN : 4-layer CNN

- Integration into coding system
 - Different model for different QP
 - Directly replace ½ DCTIF

> **Performance** (anchor: LDP, HM16.7)

Class	Secuence		BD-rate	
Class	acquence	Y (%)	U (%)	V (%)
	Kimono	-1.1	0.1	0.2
	ParkScene	-0.4	-0.3	-0.3
Class B	Cactus	-0.8	0.0	0.3
	BasketballDrive	-1.3	-0.2	-0.1
	BQTerrace	-3.2	-1.6	-1.6
	BasketballDrill	-1.2	-0.6	0.2
Class C	BQMall	-0.9	0.2	0.7
Class C	PartyScene	0.2	0.5	0.3
	RaceHorses	-1.5	-0.5	-0.1
	BasketballPass	-1.3	-0.4	0.3
Class D	BQSquare	1.2	2.9	3.1
Class D	BlowingBubbles	-0.3	0.4	0.8
	RaceHorses	-0.8	-0.9	0.0
	FourPeople	-1.3	-0.4	0.1
Class E	Johnny	-1.2	-0.4	-0.7
	KristenAndSara	-1.0	0.3	0.2
	BasketballDrillText	-1.4	-0.2	0.1
Class E	ChinaSpeed	-0.6	-0.5	-0.3
Class r	SlideEditing	0.0	0.3	0.4
	SlideShow	-0.7	-0.1	-0.2
	Class B	-1.4	-0.4	-0.3
	Class C	-0.9	-0.1	0.3
Class Summary	Class D	-0.3	0.5	1.0
	Class E	-1.2	-0.2	-0.1
	Class F	-0.7	-0.1	0.0
Overall	All	-0.9	-0.1	0.2

[1] Yan N, Liu D, Li H, et al. A convolutional neural network approach for half-pel interpolation in video coding[C]//2017 IEEE international symposium on circuits and systems (ISCAS). IEEE, 2017: 1-4..

Subpixel Interpolation

- Network input
 - Integer-pixel position samples
- Network output
 - Half-pixel position samples of each sub-pixel position
- Network Structure:
 - Different FRCNN for different half-pixel position
 - FRCNN: 4-layer CNN with Inception structure

(i.e. $a_{i,j} = r_{i,j}$ in Fig. []).

Integration into coding system

- Different model for different QP, different half-pixel position and different inter-prediction direction
- Use as an additional interpolation filter: CU-level selection between CNN,¹/₂ DCTIF and ¹/₄ DCTIF

Performance (anchor: HM16.7)

TABLE II

QPs) BD-rate of LDB BD-rate of RA BD-rate of LDP Class Sequence U(%) U (%) V (%) Y (%) V (%) Y (%) U (%) V (%) Y (%) Traffic -0.0-0.0-07PeopleOnStreet -0.9-1.2-0.8Class A Nebuta -0.8-0.9-1.0_ SteamLocomotive -1.4-1.2-1.4_ _ 0.2 0.1 -1.20.9 0.5 -0.5-0.2-0.3Kimono -4.3-0.6ParkScene -1.9-1.0-1.3-0.9-0.6-0.3-0.1-0.1-2.2-0.3Class B Cactus -3.8-0.9-1.1-1.3-1.2-0.5-0.4-5.0-1.7-2.5-0.5-0.7-1.5-0.7BasketballDrive -1.8-0.8-4.7BOTerrace -6.5-4.1-2.9-0.8-0.8-1.5-0.2-0.2-0.2-4.0-1.11.1 -3.8-0.8-1.8-0.3-0.4BasketballDrill 2.3 -3.8-0.8-0.2-0.5-0.6BQMall -4.8-1.7-1.9Class C PartyScene -3.2-1.6-2.0-3.3-0.9-0.8-2.3-0.7-0.8RaceHorses -3.0-1.8-1.9-1.5-0.9-1.3-1.1-0.8-1.2-2.1BasketballPass -3.3-1.8-1.4-0.5-1.2-1.1-1.0-0.9BQSquare -4.2-0.7-1.1-4.6-2.1-2.7-2.9-1.1-1.6Class D -5.4 BlowingBubbles -4.7-1.0-0.9-0.90.6 -2.4-0.9-0.6-1.9-0.6 -0.5 -1.7-1.6-1.4-0.8-0.8-0.6RaceHorses FourPeople -5.7-1.9-1.9-3.6-0.6-0.4--Class E Johnny -6.2-1.8-2.7-3.80.0 -1.0_ _ KristenAndSara -6.3-1.3-1.4-4.9-0.90.2 _ _ -4.1-2.1-3.5-0.6-0.5 BasketballDrillText -0.8-1.7-0.5-0.6-2.0-1.2ChinaSpeed -1.7-1.2-1.40.0 -1.3-1.3-1.1Class F SlideEditing -0.7-0.2-0.3-0.5-0.2-0.3-0.1-0.1-0.1SlideShow -2.3-1.8-2.2-1.9-2.7-1.8-0.7-0.5-0.4-0.9 -0.8-0.8Class A _ -4.3-1.5-1.8-1.9-0.3-0.4-1.0Class B -0.4-0.3-3.8-1.7-1.1-3.1-0.8-0.7-1.8-0.6-0.8Class C Class Summary -3.5-1.3-1.3-3.4-1.1-0.9-1.8-0.9-0.9 Class D -2.0-0.4Class E -6.1-1.7-4.1-0.5Class F -2.3-1.5-1.8-1.2-0.7-0.7-0.4-0.5-1.4Overall All -3.9-1.5-1.4-2.7-0.7-0.6-1.3-0.6-0.7

BD-RATE RESULTS OF OUR SCHEME COMPARED TO HEVC (ENTIRE SEQUENCE, TRAINING DATA GENERATED BY BLOWINGBUBBLES AT DIFFERENT

[2] Yan N, Liu D, Li H, et al. Convolutional neural network-based fractional-pixel motion compensation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(3): 840-853..

Subpixel Interpolation

- Network input
 - Integer-pixel position samples
- Network output
 - Quarter/half-pixel position samples of each sub-pixel position

Network Structure:

- Grouped variation neural network:
 - one model can generate all sub-pixel positions at one subpixel level and deal with frames coded with different QPs.
 - ✓ Shared feature map is generated and then used to infer subpixel samples at different locations.
 Quarter-Pixel Position Samples

the differences between different sub-pixel position samples and the integer-position sample are inferred using the same feature maposition samples are naturally obtained by adding the variations back to the integer-position sample.

- Integration into coding system
 - Different model for different sub-pixel level
 - Use as an additional interpolation filter: CU-level selection between CNN,¹/₂ DCTIF and ¹/₄ DCTIF
- Performance (anchor: HM16.4)

			rate of 1	.DP	BD	rate of I	.DB	BI)-rate of	RA
Class	Sequence	Y	U	V	Y	U	V	Y	U	V
Class A	Traffic PeopleOnStreet Nebuta SteamLocomotive Average	:	:	:	:	:	:	•1.1% •0.9% •0.1% •0.2%	0.1% •0.1% •0.3% •0.5%	0.3% •0.8% •0.4% •0.5%
Class B	Kimono BQTerrace BasketballDrive ParkScene Cactus Average	-4.1% -5.2% -3.3% -1.3% -2.5% -3.3%	2.1% •3.4% 0.2% 0.0% •0.5% •0.3%	1.6% •3.9% •0.5% •0.5% •0.8%	•1.7% •1.3% •0.5% •0.8% •1.0% •1.1%	0.9% 0.3% 0.5% 0.7% 0.0% 0.8%	0.4% 0.2% 0.1% 0.2% •0.1% 0.4%	•1.3% •2.5% •1.4% •0.7% •1.1% •1.4%	0.2% 0.0% •0.8% 0.3% •0.2% •0.1%	-0.2% -1.1% -0.8% -0.5% -1.0%
Class C	BasketballDrill BQMall PartyScene RaceHorsesC Average	•2.2% •2.9% •1.6% •2.0% •2.2%	•1.3% •2.1% •0.5% •1.4% •1.3%	•0.6% •1.7% •1.4% •1.6% •1.3%	1.0% 1.3% 0.9% 1.5%	0.0% •0.9% •0.2% •0.4%	0.1% 1.0% 0.4% 0.8%	•0.7% •1.1% •0.7% •1.6% •1.0%	0.0% •0.2% •0.4% •1.5%	0.1% •1.0% •1.1% •1.3% •0.8%
Class D	BasketballPass BlowingBubbles BQSquare RaceHorses Average	•3.3% •2.1% •0.6% •2.7% •2.2%	•1.7% •0.9% 1.2% •1.7% •0.7%	•1.4% •0.3% 3.1% •0.8% 0.2%	•1.8% •1.0% •0.7% •1.9% •1.4%	-0.9% 0.2% 1.6% 0.0% 0.2%	•1.5% •0.2% 0.9% •0.9%	•0.9% •0.8% •0.7% •1.4%	•1.0% •0.7% •0.3% •0.9%	•1.5% 0.2% •0.5% •1.1% •0.7%
Class E	FourPeople Johnny KristenAndSara	•1.6% •2.9% •2.2%	-0.5% 0.2% 1.1%	-0.2% 0.4% 0.2%	-2.8% -1.2% -1.3%	5.9% 1.1% 1.6%	0.0% 1.4% 1.2%	:	:	:
	Average BasketballDrillText	-1.8%	-0.9%	0.2%	•1.0%	-0.6%	0.8%	-0.95	0.29	-0.5%
Class F	ChinaSpeed SlideEditing SlideShow	-1.4% 0.0% -0.5%	•1.9% •0.1% 0.2%	•1.4% •0.2% •0.6%	•1.0% 0.0% •0.9%	•1.3% •0.1% 0.5%	-1.5% -0.1% 1.0%	-1.4% 0.6% -0.8%	•2.0% 0.9% 0.3%	•1.8% 0.9% •0.9%
	Average	-0.9%	•0.7%	•0.5%	-0.7%	•0.9%	-0.6%	-0.6%	•0.2%	-0.6%
All Sequences	Overall	•2.2%	-0.6%	0.5%	-1.2%	0.4%	-0.1%	•0.9%	-0.3%	-0.6%

[3] Liu J, Xia S, Yang W, et al. One-for-all: Grouped variation network-based fractional interpolation in video coding[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2140-2151.

Subpixel Interpolation

- Network input
 - Integer-pixel position samples
- Network output
 - Half-pixel position samples of each sub-pixel position
- Network Structure:

Training Scheme:

- Interpolate sub-pixel samples from integer-pixel samples
- Recover integer-pixels samples from sub-pixel samples

Integration into coding system

- Different model for different QP, different sub-pixel position
- Additional mode and replacement mode are studied

Performance (anchor: HM16.7)

	Choose between DCTIF/InvIF					InvIF Only							
Class	Sequence		LDB			RA			LDB			RA	
		Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)
	Traffic	-	-	-	-4.1	-0.2	-0.2	-	-	-	-3.3	0.2	-0.3
Class A	PeopleOnStreet	-	-	-	-3.2	-0.7	-0.7	-	-	-	-3.0	-0.5	-0.3
Class A	Nebuta	-	-	-	-0.5	-0.7	-0.5	-	-	-	0.6	0.5	0.2
	SteamLocomotive	-	-	-	-2.4	-0.6	-1.2	-	-	-	-0.6	0.5	-0.9
	Kimono	-2.8	0.3	0.3	-2.4	-0.2	-0.3	-1.4	1.0	0.7	-1.8	0.3	0.2
	ParkScene	-2.2	-0.5	-0.7	-2.6	-0.2	-0.2	0.7	0.3	0.1	-2.0	0.2	0.1
Class B	Cactus	-4.6	-0.3	-1.3	-4.1	-0.7	-0.5	-2.0	0.7	1.6	-3.6	-0.3	-0.1
	BasketballDrive	-4.0	-0.3	-0.5	-2.9	-0.6	-0.6	-2.6	1.1	0.7	-1.8	0.1	0.3
	BQTerrace	-5.4	-1.6	-0.7	-6.7	-1.1	-1.5	1.9	1.5	2.3	-4.0	-0.3	-0.7
	BasketballDrill	-5.1	0.4	0.9	-3.7	-0.1	-0.1	-4.1	1.2	-1.9	-3.4	0.4	0.2
Class C	BQMall	-5.9	-1.0	-1.0	-4.7	-0.6	-1.1	-3.9	-0.4	-0.7	-3.9	-0.3	-0.5
Class C	PartyScene	-4.7	-2.2	-2.4	-5.7	-1.8	-1.8	-2.7	-2.0	-2.0	-5.2	-1.5	-1.5
	RaceHorses	-3.1	-0.4	-0.9	-2.4	-0.5	-0.6	-2.1	-0.0	0.6	-1.9	0.2	0.0
	BasketballPass	-3.8	-0.7	-0.7	-2.6	-0.6	-0.7	-3.3	-0.1	-0.1	-2.3	-0.3	-0.2
Class D	BQSquare	-10.3	-4.7	-4.9	-13.1	-5.4	-5.2	-8.0	-3.3	-3.2	-12.5	-5.1	-5.1
Class D	BlowingBubbles	-5.3	-2.0	-0.9	-5.3	-1.1	-1.2	-3.6	-1.0	-0.1	-5.0	-0.9	-1.0
	RaceHorses	-4.2	-0.9	-0.3	-2.9	-0.2	-0.1	-3.5	-0.2	0.2	-2.5	0.0	0.2
	FourPeople	-7.9	-0.3	-0.4	-	-	-	-5.4	0.6	0.6	-	-	-
Class E	Johnny	-6.8	1.8	0.3	-	-	-	-1.3	5.8	6.4	-	-	-
	KristenAndSara	-8.8	0.8	1.4	-	-	-	-6.4	2.6	3.8	-	-	-
	BasketballDrillText	-4.9	-0.3	-0.4	-3.8	-0.5	-0.6	-4.0	0.3	1.0	-3.4	0.2	-0.2
Close F	ChinaSpeed	-1.4	-1.0	-0.9	-1.0	-1.0	-0.9	-0.1	0.5	0.4	-0.3	-0.2	0.0
Class F	SlideEditing	-0.4	-0.1	-0.2	-0.3	-0.2	-0.2	0.0	0.3	0.5	-0.0	-0.1	-0.1
	SlideShow	-3.2	-3.1	-1.5	-0.9	-0.3	-0.4	-2.1	-2.3	-2.3	-0.4	0.1	0.0
	Class A	-	-	-	-2.5	-0.5	-0.6	-	-	-	-1.6	0.2	-0.2
	Class B	-3.8	-0.6	-0.3	-3.7	-0.6	-0.6	-0.7	0.9	1.1	-2.6	0.0	0.0
Summer	Class C	-4.7	-0.8	-0.8	-4.2	-0.7	-0.9	-3.2	-0.3	-0.1	-3.6	-0.3	-0.4
Jummary	Class D	-5.9	-2.1	-1.7	-6.0	-1.8	-1.8	-4.6	-1.1	-0.8	-5.6	-1.6	-1.5
	Class E	-7.9	0.5	0.4	-	-	-	-4.4	3.0	3.6	-	-	-
	Class F	-2.5	-1.1	-0.7	-1.5	-0.5	-0.5	-1.6	-0.3	-0.1	-1.0	-0.1	-0.1
Overall	All	-4.7	-0.8	-0.7	-3.6	-0.8	-0.9	-2.7	0.3	0.6	-2.9	-0.3	-0.4

[4] Yan N, Liu D, Li H, et al. Invertibility-Driven Interpolation Filter for Video Coding[J]. IEEE Transactions on Image Processing, 2019, 28(10): 4912-4925.

Block Refinement of Uni-Prediction

- Network input
 - Predicted CU by conventional methods
 - L-shape neighboring pixels of current CU

Network output

• Refined predicted block

Network Structure:

• VRCNN: 4-layer CNN

- Integration into coding system
 - Different model for different QP
 - Switchable at CU-level

Performance (anchor: LDP, HM12.0)

-	Class	Facularias	BD-Rate	(Simple C	NNMCR)	BD-R	ate (CNN)	MCR)	BD	-Rate (OB)	MC)	BD-Rate	(OBMC +	CNNMCR)
	Class	Sequence	Y	U	v	Y	U	V	Y	U	V	Y	U	V
-		Kimono	-1.9%	0.7%	-0.3%	-2.7%	0.6%	-0.3%	-1.8%	-2.4%	-2.2%	-4.3%	-2.4%	-2.6%
		ParkScene	0.5%	0.0%	-0.2%	0.4%	0.3%	0.0%	-2.7%	-3.0%	-2.9%	-2.5%	-2.7%	-2.9%
	Class B	Cactus	-1.8%	-0.6%	-0.3%	-2.5%	-0.9%	-0.6%	-4.4%	-4.3%	-4.2%	-6.5%	-5.1%	-4.2%
	1	BasketballDrive	-1.9%	0.2%	0.1%	-2.6%	-0.2%	0.1%	-2.3%	-3.4%	-3.0%	-4.6%	-3.1%	-2.9%
_		BQTerrace	-5.0%	-2.4%	-2.3%	-6.0%	-3.2%	-3.0%	-6.8%	-5.5%	-4.8%	-11.2%	-7.0%	-6.9%
		BasketballDrill	-2.7%	1.0%	1.4%	-3.3%	0.8%	1.0%	-4.3%	-3.7%	-4.6%	-7.5%	-2.7%	-3.9%
	Class C	BQMall	-1.9%	0.3%	0.0%	-2.9%	-0.6%	0.2%	-4.5%	-5.2%	-5.5%	-6.9%	-5.0%	-5.4%
	Cleas C	PartyScene	-2.2%	0.1%	-0.2%	-2.7%	-0.5%	-0.3%	-3.8%	-2.8%	-3.4%	-6.3%	-3.8%	-3.8%
		RaceHorsesC	-0.5%	0.8%	0.0%	-0.9%	0.3%	-0.1%	-4.0%	-4.8%	-5.2%	-4.7%	-4.3%	-4.1%
-		BasketballPass	-1.4%	1.1%	1.5%	-2.3%	0.6%	0.7%	-4.4%	-3.3%	-4.1%	-5.9%	-3.2%	-3.9%
	Close D	BQSquare	-6.0%	-2.2%	-1.9%	-6.7%	-2.3%	-1.7%	-7.0%	-4.6%	-6.0%	-12.4%	-6.3%	-7.2%
	Class D	BlowingBubbles	-1.9%	0.0%	-0.1%	-2.6%	0.1%	0.8%	-3.4%	-2.7%	-2.8%	-5.7%	-1.9%	-3.2%
		RaceHorses	-0.8%	0.3%	0.3%	-1.5%	0.3%	0.2%	-3.9%	-4.0%	-3.4%	-5.1%	-3.6%	-3.6%
-		FourPeople	-1.1%	0.7%	0.7%	-2.1%	0.8%	1.0%	-2.2%	-2.5%	-2.1%	-4.7%	-1.7%	-1.8%
	Class E	Johnny	-1.3%	2.4%	1.6%	-2.5%	1.0%	1.8%	-3.7%	-2.4%	-2.4%	-5.5%	-1.1%	-0.5%
		KristenAndSara	-1.7%	1.9%	1.8%	-2.7%	1.7%	1.3%	-2.0%	-1.6%	-1.5%	-5.0%	-0.7%	-0.4%
		BasketballDrillText	-2.4%	0.3%	0.6%	-2.6%	0.3%	1.0%	-4.0%	-3.7%	-4.5%	-6.4%	-3.3%	-3.5%
	Close F	ChinaSpeed	0.0%	0.6%	0.8%	0.0%	0.2%	0.2%	0.9%	-0.2%	-0.1%	0.8%	-0.5%	-0.1%
	Cidaa i	SlideEditing	0.5%	0.2%	0.3%	0.3%	0.1%	0.0%	0.9%	1.0%	0.9%	2.0%	1.7%	1.7%
		SlideShow	-1.5%	0.5%	-0.9%	-1.1%	0.6%	-0.9%	0.0%	-0.2%	-1.6%	-1.0%	0.1%	-0.7%
		Class B	-2.0%	-0.4%	-0.6%	-2.7%	-0.7%	-0.8%	-3.6%	-3.7%	-3.4%	-5.8%	-4.1%	-3.9%
-1		Class C	-1.8%	0.5%	0.3%	-2.5%	0.0%	0.2%	-4.2%	-4.1%	-4.7%	-6.4%	-3.9%	-4.3%
a;	Class Summary	Class D	-2.5%	-0.2%	-0.1%	-3.3%	-0.3%	0.0%	-4.7%	-3.7%	-4.1%	-7.2%	-3.7%	-4.5%
		Class E	-1.4%	1.7%	1.4%	-2.5%	1.2%	1.4%	-2.6%	-2.2%	-2.0%	-5.1%	-1.2%	-0.9%
		Class F	-0.8%	0.4%	0.2%	-0.8%	0.3%	0.1%	-0.6%	-0.8%	-1.3%	-1.2%	-0.5%	-0.7%
	Average o	f Classes B–F	-1.8%	0.3%	0.1%	-2.3%	0.0%	0.1%	-3.2%	-3.0%	-3.2%	-5.2%	-2.8%	-3.0%

[5] Huo S, Liu D, Wu F, et al. Convolutional neural network-based motion compensation refinement for video coding[C]//2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018: 1-4.

Spatial neighboring pixels

С

Current block

Block Refinement of Uni-Prediction

- Network input
 - Prediction CU of conventional methods
 - L-shape neighboring reconstructed pixels of both current predicted block and temporal reference block

Refined predicte

 \succ

Network Structure:

• Fully connected network + CNN

Integration into coding system

- Different model for different QP and different blocksize
- Switchable at CU-level

Table 2. The BD-rate of NNIP for luma component compare

Performance (anchor: LDP, HM16.9)

HM 16.9			
Class	Resolution	Sequence	BD-Y
Class A	2560-1600	Traffic	-1.5%
Class A	2300x1000	PeopleOnstreet	-0.6%
		Kimono	-1.9%
		ParkScene	-0.3%
Class B	1920x1080	Cactus	-2.3%
		BasketballDrlve*	-3.8%
		BQTerrace	-8.6%
		BasketballDrlll	-1.3%
Class C	832×480	BQMall*	-2.2%
Class C	0323400	PartyScene	-0.7%
		RaceHorses	-0.6%
		BaskethallPass	-0.9%
Char D	416-240	BQSquare	-1.3%
Class D	+10X2+0	BlowingBubbles*	-0.7%
		RaceHorses	-0.6%
		FourPeople	-1.5%
Class E	128x720	Johny	-2.0%
		KrlstenAndSara	-2.1%
	Avera	ge	-1.7%

fable 3.	The compu	itational c	omplexity	of NNIP
		ΔT_{enc}	ΔT_{dec}	
	Class A	3273%	1700%	
	Class B	3314%	3301%	
	Class C	2479%	2416%	
	Class D	2842%	1578%	
	Class E	5310%	1113%	
	Average	3444%	2022%	

[6] Y. Wang, X. Fan, C. Jia, D. Zhao and W. Gao, "Neural Network Based Inter Prediction for HEVC," 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, 2018, pp. 1-6, doi: 10.1109/ICME.2018.8486600.

Bi-prediction Block Generation

- Network input
 - 2 reference blocks

Network output

- Bi-directional prediction block
- Network Structure:
 - CNN

Integration into coding system

- Different model for different QP and different block size
- Directly replace the traditional simple average of bi-prediction reference blocks

Performance (anchor: RA, HM16.15)

BD-RATE REDUCTIONS IN THE DIFFERENT CONFIGURATIONS.

									COMPUTATIONA	I COMPLEXITY ON RA	I CONFIGURAT	ION OF DIFFER
			R	andom Acces	ss		Low Delay B	1	COMPENSIONS	SEQUENC	ES	ION OF DIFFERE
		Sequences	BD-rate Y	BD-rate U	BD-rate V	BD-rate Y	BD-rate U	BD-rate V				
ut 2 ¹⁷	Charles A	Traffic	-2.6 %	0.4 %	0.4 %	-2.1 %	1.6 %	1.7 %		Sequences	ΔT_{Enc}	ΔT_{Dec}
N×2	Class A	PeopleOnStreet	-1.7 %	-1.0 %	-1.1 %	-0.6 %	0.3 %	-0.1 %	Class A	Traffic	184.0 %	3632.7 %
		Kimono	-2.5 %	-0.1 %	-0.1 %	-1.7 %	0.4 %	1.0 %		PeopleOnStreet	152.1 %	3093.1 %
4		ParkScene	-2.7 %	-0.2 %	-0.4 %	-1.5 %	0.8 %	0.2 %		Kimono	159.4 %	4866.2 %
	Class B	Cactus	-3.5 %	-0.1 %	-0.6 %	-1.6 %	0.1 %	0.1 %		ParkScene	173.8 %	3678.2 %
		BasketballDrive	-2.6 %	-0.6 %	-0.5 %	-1.3 %	1.0 %	0.8 %	Class B	Cactus	162.8 %	4627.5 %
		BQTerrace	-6.2 %	-0.8 %	-0.9 %	-3.3 %	1.0 %	-0.8 %		BasketballDrive	158.4 %	4081.1 %
		BasketballDrill	-2.1 %	0.4 %	0.4 %	-2.0 %	1.9 %	1.7 %		BQTerrace	190.8 %	3516.7 %
J	Class C	BQMall	-2.7 %	-0.3 %	-0.5 %	-1.5 %	0.6 %	1.0 %		BasketballDrill	153.7 %	3623.0 %
		PartyScene	-2.7 %	-0.5 %	-0.7 %	-0.5 %	0.2 %	0.6 %		BOMall	161.3 %	4555.7 %
		RaceHorses	-1.0 %	-0.5 %	-0.5 %	-0.1 %	0.3 %	0.5 %	Class C	PartyScene	163 1 %	4704.9 %
		BasketballPass	-1.6 %	-0.7 %	-0.3 %	-0.5 %	0.5 %	0.5 %		Darallana	140.0 %	2675.2.0
	Charles D	BQSquare	-8.8 %	-4.1 %	-4.0 %	-1.8 %	-0.2 %	1.1 %		RaceHorses	140.0 %	30/3.2 %
	Class D	BlowingBubbles	-2.6 %	-0.6 %	-0.4 %	-1.3 %	0.5 %	1.2 %		BasketballPass	180.4 %	6078.2 %
		RaceHorses	-1.4 %	-0.4 %	-0.7 %	-0.4 %	0.5 %	0.0 %	Class D	BQSquare	206.6 %	6759.1 %
		FourPeople	-	-	-	-3.7 %	0.4 %	0.4 %		BlowingBubbles	162.4 %	5590.5 %
	Class E	Johnny	-	-	-	-2.8 %	2.6 %	3.4 %		RaceHorses	122.8 %	4567.3 %
		KristenAndSara	-	-	-	-2.6 %	1.6 %	2.5 %		Average	164.9 %	4470.0 %
		Average	-3.0 %	-0.6 %	-0.6 %	-1.6 %	0.8 %	0.9 %				

[7] Zhao Z, Wang S, Wang S, et al. Enhanced Bi-Prediction With Convolutional Neural Network for High-Efficiency Video Coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(11): 3291-3301.

Refinement of Bi-prediction Block

Network input

- 2 reference blocks, together with L-shape neighboring ٠ pixels of the 2 reference blocks
- Predicted block by averaging of 2 reference blocks, together with L-shape neighboring pixels of current block
- Temporal distances between each reference block and ٠ current block
- Network output \succ
 - Current bi-predicted block ٠

Network Structure

Switchable in Merge mode MANCE COMPARISON WITH THE FIRS UNDER RA CONFIGURATION (ANCHOR: HM-16.15) \succ Performance LWP [10] Zhao [14] Sequence

- Integration into coding system
 - Different model for different QP and different block size

NewSea

AverageAllSeq

Replace traditional averaging bi-prediction in AMVP mode

(anchor: RA, HM16.15)

Kimono	-0.19%	-2.06%	-2.18%	-3.00%
BQTerrace	-0.45%	-6.79%	-6.79%	-7.86%
Cactus	-0.91%	-4.58%	-5.15%	-5.33%
BasketballDrive	-1.59%	-3.04%	-4.48%	-3.51%
ParkScene	-0.02%	-3.01%	-2.95%	-3.68%
Class B	-0.63%	-3.90%	-4.31%	-4.68%
BasketballDrill	-0.54%	-2.54%	-2.78%	-2.72%
BQMall	-0.06%	-2.81%	-2.86%	-3.42%
PartyScene	-0.11%	-2.60%	-2.67%	-3.85%
RaceHorsesC	-0.23%	-0.96%	-1.07%	-1.51%
Class C	-0.24%	-2.23%	-2.35%	-2.88%
BasketballPass	0.14%	-2.49%	-2.55%	-3.32%
BQSquare	0.09%	-8.10%	-7.91%	-10.77%
BlowingBubbles	-0.53%	-2.10%	-2.29%	-2.72%
RaceHorses	-0.26%	-1.65%	-1.37%	-2.21%
Class D	-0.14%	-3.59%	-3.53%	-4.76%
FourPeople	-0.40%	-7.11%	-7.43%	-8.73%
Johnny	-0.41%	-5.89%	-5.89%	-7.05%
KristenAndSara	-0.08%	-7.03%	-6.99%	-8.02%
Class E	-0.30%	-6.68%	-6.77%	-7.94%
CanotSTA	-1.77%	-2.70%	-3.82%	-3.48%
MilkyWay	-3.50%	-5.14%	-7.35%	-7.43%
TPMSTA	-0.72%	-2.86%	-3.51%	-3.29%
WAmoving	-0.66%	-3.03%	-3.61%	-4.06%

-3.43%

-3.83%

-4.57%

-4.18%

-4.56%

-4.80%

Our

STCNN

COMPUTATION COMPLEXITY ON RA CONFIGURATION

-1.66%

-0.61%

Class	LWP [10]		Zhao [14]		LWP [10]	+Zhao [14]	proposed STCNN		
Class	Enc(%)	Dec(%)	Enc(%)	Dec(%)	Enc(%)	Dec(%)	Enc(%)	Dec(%)	
Class B	123	102	165	750	191	750	179	1425	
Class C	121	98	157	843	180	821	168	1396	
Class D	116	104	160	1429	181	1462	169	2209	
Class E	124	106	181	947	209	953	195	1462	
Overall	121	102	165	980	189	984	177	1620	

[8] Mao J, Yu L. Convolutional Neural Network Based Bi-prediction Utilizing Spatial and Temporal Information in Video Coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7), 1856-1870.

- Prediction of block of pixel values
 - Fractional pixel interpolation
 - Super-resolution: position-aware model
 - Refinement of traditional prediction or directly generation of prediction
 - Content adaptive temporal filtering to replace simple average
 - Generalize of bi-hypothesis uni-directional and bi-directional by introduce temporal distances: temporal interpolation and extrapolation
 - With/without motion vector
 - As supplementing inter modes or replacing to traditional ones
- Prediction of motion/optical flow

Transform

Network structure:

- CNN Layers: feature analysis
- Fully Connection Layer: fulfill the transform

> Training method:

- Initialization: FC Layer is initialized by transform matrix of DCT/IDCT
- Joint training of FC and CNN
- Loss: joint rate-distortion cost
 - Rate estimated by the I1-norm of the quantized coefficients
 - Distortion estimated by MSE
- How good will it be for prediction residuals?

> Performance

Table 1. BD-rate results of our symmetric network compared with different anchors

	Ours vs. DCT (32×32)	Ours vs. JPEG	Ours vs. Toderici et al.
kodim01	-17.74%	-28.45%	-36.71%
kodim02	-3.15%	-56.38%	-79.21%
kodim03	-10.28%	-47.22%	-67.99%
kodim04	-2.86%	-50.96%	-65.11%
kodim05	-18.31%	-24.65%	-28.60%
kodim06	-13.29%	-35.05%	-59.77%
kodim07	-11.10%	-39.13%	-54.94%
kodim08	-11.63%	-24.42%	-36.11%
kodim09	-8.09%	-41.15%	-61.45%
kodim10	-5.46%	-42.18%	-61.39%
kodim11	-10.91%	-33.09%	-55.52%
kodim12	-8.84%	-43.60%	-69.24%
kodim13	-13.35%	-23.27%	-41.25%
kodim14	-15.91%	-30.20%	-46.09%
kodim15	7.17%	-37.82%	-60.90%
kodim16	-7.95%	-46.79%	-67.92%
kodim17	11.88%	-35.22%	-44.26%
kodim18	-15.79%	-34.46%	-48.31%
kodim19	-9.84%	-47.52%	-65.65%
kodim20	-3.26%	-35.89%	-62.65%
kodim21	-17.32%	-34.89%	-60.27%
kodim22	-12.52%	-39.39%	-57.85%
kodim23	-3.48%	-54.09%	-77.02%
kodim24	-10.00%	-26.80%	-51.71%
Average	-8.83%	-38.03%	-56.66%

[1] Liu D, Ma H, Xiong Z, et al. CNN-based DCT-like transform for image compression[C]//International Conference on Multimedia Modeling. Springer, Cham, 2018: 61-72.

Quantisation

Content-adaptive QP selection

Local visibility threshold prediction- VNet-2

- Convolution layer: 362 trainable parameters (19*19 kernel + 1bias)
- Subsampling layer: scale=2, 2 trainable parameters(1 weight + 1 bias)
- Full connection layer: 530 trainable parameters(23*23 weight + 1 bias)

Quantization steps derivation for CTU

 $\log(Q_{step}) = \alpha C^2 + \beta C + \gamma$

- C : predicted local visibility threshold
- $\{\alpha, \beta, \gamma\}$: model coefficients depend on patch features, predicted from 3 separate NNs.

Performance

• 11% bitrate saving for luma channel against HEVC at same SSIM.

[1] Alam M M, Nguyen T D, Hagan M T, et al. A perceptual quantization strategy for HEVC based on a convolutional neural network trained on natural images[C]//Applications of Digital Image Processing XXXVIII. International Society for Optics and Photonics, 2015, 9599: 959918.

Entropy coding

Probability Estimation of Intra Prediction Mode

Network inputs

- **Reconstructed pixels**: above-left, above and left blocks with the same size of current coding block
- Prediction modes of 3 neighboring blocks: one 35-D one-hot binary vector for each neighboring block
- Network output
 - 35-D probability vector of 35 intra prediction modes
- Network structure
 - Based on LeNet-5

Integration into coding system

Fig. 3. The scheme of CNN-based arithmetic coding.

Performance (anchor: AI, HM12.0)

TABLE I

BITS SAVINGS FOR INTRA PREDICTION MODES IN HM-INTRA-8

	-			
QP	22	27	32	37
ClassA	-9.9%	-9.8%	-9.6%	-8.0%
ClassB	-8.9%	-9.1%	-8.7%	-6.3%
ClassC	-10.0%	-10.2%	-9.7%	-7.1%
ClassD	-7.0%	-8.0%	-8.7%	-6.6%
ClassE	-9.7%	-11.5%	-13.0%	-12.0%
ClassF	-8.8%	-9.9%	-9.7%	-9.3%
Average	-9.0%	-9.8%	-9.9%	-8.2%

[1] Song R, Liu D, Li H, et al. Neural network-based arithmetic coding of intra prediction modes in HEVC[C]//2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2017: 1-4.

Entropy coding

Probability Estimation of Transform Kernel Index

- Network input
 - Transform coefficients block
- Network output
 - Probability vector of transform kernel indexes
- Network structure
 - Convolution layer
 - Subsampling layer: scale=2
 - Fully connected layer

- Utilize the probability to reorder transform kernel indexes
- Binarize the index with truncated unary code

Fig. 1: Block Diagram of proposed CNN-based transform index coding

> Performance (anchor: Al, HM15.0)

Class	Sequence	EP	CTXT	CNN	NoIndex
А	Nebuta	-0.37	-0.38	-0.40	-0.37
	PeopleOnStreet	-0.75	-0.69	-0.90	-1.75
	SteamLocomotive	0.03	-0.03	-0.03	-0.19
	Traffic	-0.85	-0.83	-1.10	-1.82
	Overall	-0.49	-0.48	-0.61	-1.03
В	BasketballDrive	-0.22	-0.42	-0.48	-0.47
	BQTerrace	-1.44	-1.56	-1.70	-3.11
	Cactus	-1.02	-1.07	-1.25	-2.48
	Kimono	0.18	-0.27	-0.05	-0.08
	ParkScene	-0.45	-0.59	-0.74	-2.81
	Overall	-0.59	-0.67	-0.84	-1.79
С	BasketballDrill	-3.14	-3.36	-3.34	-3.29
	BQMall	-1.74	-1.81	-1.91	-3.33
	PartyScene	-2.03	-2.14	-2.15	-3.89
	RaceHorses	-1.59	-1.57	-1.82	-3.38
	Overall	-2.12	-2.22	-2.31	-3.47

[2] Puri S, Lasserre S, Le Callet P. CNN-based transform index prediction in multiple transforms framework to assist entropy coding[C]//2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017: 798-802.

Entropy coding

- Probability estimation Possibility estimation
 - For different syntaxes
 - Mode indexes, coefficients values, ...
 - Using correlated information
 - Reconstructed pixels, intermediate reconstructed pixels
 - Decoded neighboring modes
 - o Labels
 - Happened or not **POSSIBILITY** instead of probability
 - *Possibility* describes the likelihood of a value happening in one symbol while *probability* describe the frequency of a value happening in an infinite string of symbols
 - *Possibility* is a more suitable descriptor for non-stationary process
- Z. He, L. Yu, Possibility distribution based lossless coding and its optimization, *Signal Processing*, Vol. 150, pp 122-134, Sep. 2018

Performance

Hybrid or End-to-End?

End-to-End Video Coding

 $L = \lambda D + R = \lambda d(x_t, \bar{x}_t) + R(\hat{m}_t) + R(\hat{y}_t)$

 Bit rate estimation part of an end-to-end image compression network

[1] Lu G, Ouyang W, Xu D, et al. Dvc: An end-to-end deep video compression framework[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 11006-11015.

End-to-End Video Coding

 $L = \lambda D + R = \lambda d(x_t, \bar{x}_t) + R(\hat{m}_t) + R(\hat{y}_t)$

- Intra Coding & Residual Coding
 - ✓ An end-to-end image compression network
- Inter Coding
 - ✓ One-stage Unsupervised Flow Learning:

Optical flow estimation and compression realized in one stage

✓ Context Adaptive Flow Compression

hyperpriors, temporal priors generated by ConvLSTM are used.

[2] Liu H, Huang L, Lu M, et al. Learned Video Compression via Joint Spatial-Temporal Correlation Exploration[C]//AAAI. 2020.

End-to-End Video Coding

Performance

Proposed (0.0181/0.9747)

H.265/HEVC (0.01935/0.9698)

Figure 8: Visual Comparison. Reconstructed frames of our method, H.265/HEVC and H.264/AVC. We avoid blocky artifacts and provide better quality of reconstructed frame at low bit rate.

[1] Liu H, Huang L, Lu M, et al. Learned Video Compression via Joint Spatial-Temporal Correlation Exploration[C]//AAAI. 2020.

Conclusion

- All roads lead to Rome
 - NN modules embedded into hybrid video coding frameworks can bring significant coding gains
 - End-to-end image and video coding still follow the source coding theory
 - **Training:** separately or jointly
- Performance of learning based coding comes from
 - Re-organization of information: non-linear transform to independent symbol
 - Quantization: scalar vs. vector quantization
 - Entropy coding: hyperprior to estimate of possibility + arithmetic coding

Latest Publications on Learning-based Coding

 SPECIAL SECTION ON LEARNING-BASED IMAGE AND VIDEO CODING, IEEE TCSVT 2020. Jul

12 papers:

- End-to-end image compression (1)
- Intra prediction (3)
- Inter prediction (2)
- Filtering (2)
- Arithmetic coding (1)
- Encoder optimization (3)

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

	ON OF THE IEEE CIRC	UITS AND SYSTEM	IS SOCIETY		
				WWW.IEEE-CAS.	ORG
JULY 2020	VOLUME 30	NUMBER 7	ITCTEM	(ISSN 1051-821	5)
SPECIAL SECTION	ON ON LEARING-BASED	IMAGE AND VIDEO	COMPRESSION		
Introduction to Spe	cial Section on Learning-Ba	sed Image and Video Co	mpression S. Liu,	WH. Peng, and L. Yu	1785
SPECIAL SECTION PA	APERS				
Ioward variable-Ka	utional Naural Naturark Pag	ad Intra Pradiction for V	C. Han, Y. Duan, X.	Tao, M. Xu, and J. Lu	1789
Multi-Scale Convol	uuonai neurai network-bas	Y	Wang. X. Fan. S. Liu.	D. Zhao. and W. Gao	1803
CNN-Based Intra-P	Prediction for Lossless HEVO	7	I. Schiopu, H. Hu	ang, and A. Munteanu	1816
Deep-Learning-Bas	ed Lossless Image Coding .		I. Sch	iopu and A. Munteanu	1829
Deep Frame Predic	tion for Video Coding		H	I. Choi and I. V. Bajić	1843
Convolutional Neur	ral Network Based Bi-Predic	tion Utilizing Spatial and	l Temporal Informatio	n in Video Coding J. Mao and L. Yu	1856
A Switchable Deep	Learning Approach for In-I	Loop Filtering in Video C	Ding, L. Kong, G. Che	n, Z. Liu, and Y. Fang	1871
Recursive Residual	Convolutional Neural Netwo	ork- Based In-Loop Filte	ring for Intra Frames		1000
Convolutional Neur	ral Network-Rased Δrithmeti	c Coding for HEVC Intr	S. Zhang, Z. Fan, a-Predicted Residues	N. Ling, and M. Jiang	1888
Convolutional Teen	ar retwork Based / Indined	c county for the ve him	C. Ma. D. Liu. X. I	Peng, L. Li, and F. Wu	1901
DeepSCC: Deep Le	earning-Based Fast Prediction	n Network for Screen Co	ontent Coding		
		W. Ku	ang, YL. Chan, SH.	Tsang, and WC. Siu	1917
Fast Depth Map In	tra Coding for 3D Video Co	mpression-Based Tensor	Feature Extraction and	Data Analysis	1022
High-Definition Vic	leo Compression System Bas	sed on Percention Guidar		ion of a Convolutional	1933
Neural Network	and HEVC Compression Do	main	S. 2	Chu, C. Liu, and Z. Xu	1946
	*		(0		6

(Contents Continued on Back Cover)

Deep Neural Network Based Video Coding

- AhG on DNNVC established in 130th MPEG meeting in Apr. 2020
- Mandates
 - Evaluate and quantify performance improvement potential of DNN based video coding technologies (including hybrid video coding system with DNN modules and end-to-end DNN coding systems) compared to existing MPEG standards such as HEVC and VVC, considering various quality metrics;
 - Study quality metrics for DNN based video coding;
 - Solicit input contributions on DNN based video coding technologies;
 - Analyze the **encoding and decoding complexity** of NN based video coding technologies by considering software and hardware implementations, including impact on power consumption;
 - Investigate technical aspects specific to NN-based video coding, such as design network representation, operation, tensor, on-the-fly network adaption (e.g. updating during encoding) etc

Subscribe mailing list:

https://lists.aau.at/mailman/listinfo/mpeg-dnnvc

Image/Video Coding for ...

Reconstruction image/video for human vision -- yes, but not the only target

Coding image/video for machine understanding

Video Coding for Machine: Use Cases

• 6 major application areas

- Smart Industry
- Intelligent Transportation
- Smart Retailer
- Smart City
- Smart Sensors Networks
- Immersive Video / HD Entertainment
- Smart Media Editing and Creation
- Use Cases:
 - machine-oriented analysis
 - hybrid machine/human representation

Video Coding for Machine: Potential Pipelines

Video Coding for Machine

AutoSave 👓 🖬 🦌	🤉 - 🐨 w18543.docx teonardo Chiariglione 💿 🖉 🖽				
ile <u>Home</u> Insert	Design Layout References Mailings Review View Help Table Design Layout P Search d Shar				
ate Format Painter	Tenes Hew formav[10] x, X ∧ As As E E E E E AsthCoch 1 AsthB L11 Asth L11 Asth Q AsthCoch AsthCoch B J U where E E E AsthCoch 1 AsthCoch 1 AsthCoch 1 AsthCoch 1 AsthCoch Q AsthCoch Q AsthCoch				
Meeting	Room Size				
Name	AHG on Video Coding for Machines				
Mandates	To collect use cases and related requirements for description and compression of video for machine analysis Z. To collect use cases and related requirements for combined human/machine-oriented video representation and compression X. To promote video coding for machine and invite video compression and machine vision experts				
	4. To collect data sets, ground truth and metrics 5. To compare performance of analysis using eriginal data vs. analysis using compressed features at different bit rates in the typical cases of object detection 6. To collect evidence on the level of achievability of combined human/machine-oriented video prepresentation and compression				
Chairmen	Yuan Zhang (China Telecom), zhangyuan1.shii)chinatelecom.en, Patrick Dong (Oyrfalcon Tech), patrick.dong/ilgyrfalcontech.com				
Duration	Until MPEG 128				
Reflector(s)	impeg-vem@lists.am.it				
Subscribe	https://lists.aau.at/mailman/listinfo/mpeg-vem				
Meeting	14:00-18:00 Sunday before MPEG 128 Room Size 30				
T					

VCM mailing list

AhG on VCM established in 127th MPEG meeting in July, 2019

Mandates

٠

- To create and evaluate anchors for object detection, object segmentation and object tracking
- To collect data sets, ground truth
- To define metrics for object detection, object segmentation and object tracking
- To compare performance of analysis using original data vs. analysis using compressed features at different bit rates in the typical cases of object detection
- To collect evidence on the level of achievability of combined human/machine-oriented video representation and compression
- To encourage experts to provide **feature stream codecs**
- To encourage experts to provide uncompressed bitstream from feature extractor

• Preliminary Timeline

- 2019.07 Establish VCM, set up mailing list, release use cases
- 2020.01 Release requirements, provide evidences on Mandate 5 and 6
- 2020.07 Call for evidence

Thonk/

Contact me: yul@zju.edu.cn